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Abstract Uncertainty plays a key role in the economics of
climate change, and research on this topic has led to a substan-
tial body of literature. However, the discussion on the policy
implications of uncertainty is still far from being settled, partly
because the uncertainty of climate change comes from a vari-
ety of sources and takes diverse forms. To reflect the multifac-
eted nature of climate change uncertainty better, an increasing
number of analytical approaches have been used in the studies
of integrated assessment models of climate change. The
employed approaches could be seen as complements rather
than as substitutes, each of which possesses distinctive strength
for addressing a particular type of problems. We review these
approaches—specifically, the non-recursive stochastic pro-
gramming, the real option analysis, and the stochastic dynamic
programming—their corresponding literatures and their re-
spective policy implications. We also identify the current re-
search gaps associated with the need for further developments
of new analytical approaches.

Keywords Uncertainty . Learning . Economics of climate
change . Integrated assessment models . Real options .
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1 Introduction

Although a large body of scientific evidence confirms the
existence of the problem, the detailed mechanism and im-
pacts of climate change are still uncertain. Such uncertainty
poses a significant problem for policy making about cli-
mate change, and examination of this issue has yielded a
body of literature in the field of economics of climate
change as well. Those studies revolve around the basic
question of how uncertainty and the reduction of uncertain-
ty in the future affect optimal climate policy. This question
can be broken down into the following subquestions: How
do individual types of uncertainty influence the optimal
timing and stringency of climate policy? How does future
learning influence optimal policy? What is the value of
information about different uncertainties?

Theoretical studies have shed some light on these questions
(for reviews, see e.g., [11, 27, 56]) but the estimation of
quantitative benchmarks usable in the policy debate necessi-
tates the application of detailed models featuring the key
mitigation technologies and key uncertainties of climate
change. Therefore, an increasing number of studies utilize
numerical integrated assessment models (IAMs), the primary
tool for the investigation of complex climate-economy
interactions.

This article reviews the approaches that have been applied
in the literature of those integrated assessment model studies,
and summarizes their respective policy implications. It fol-
lows the previous review articles by Kann and Weyant [31],
Heal and Kriström [26], and Peterson [54]. However, we set a
particular focus on the complementarity of varied analytical
approaches to analyze the first-best optimal decisions of cli-
mate policy under uncertainty, for which a model needs to
consider issues intrinsic to decision making under uncertainty,
such as learning and the agent’s risk aversion. Modeling of
this aspect is one of the areas that have seen the most progress
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since those earlier reviews were published, and differences in
methodological approaches play an important role for such
analysis.

Indeed, climate change embodies various types and sources
of uncertainty, and there is not yet an all-purpose analytical
approach to represent all those types and sources. In every link
of the cause-effect relationship of climate change from emis-
sions to global warming and impacts, there are parametric
uncertainty, which means incomplete knowledge of model
parameters, and stochastic uncertainty or stochasticity, which
is persistent randomness of the system because of unresolved
processes. Another layer of complexity is the fact that knowl-
edge is continuously updated because of scientific progress
and measurements. The various uncertainties and their
updating can be called the information dynamic complexity
of the problem. As a result, estimation of realistic probability
distributions for mitigation costs and for avoided benefits
under different policies is difficult. This can be called the
system dynamic complexity of the problem. The information
and system dynamic complexity of the problem suggests that
multiple complementary analytical approaches with different
tradeoffs between the two complexities are required to grasp
the full implications of uncertainty for climate policy.

Near-term climate policy has to be in place before major
uncertainties are resolved. A selected policy should balance
the near-term abatement costs and the correction costs in the
future along with irrecoverable damages and also sunk abate-
ment costs. Quantitative methods should help decision-
makers process all available information at the moment
and assign a value to each feasible policy by taking into
account the projected costs and correction costs in response
to learning. Even if understanding of the future is incom-
plete it should be represented in the model. In fact, without
any value assigned to the irreversible nature of climate
change, there are little benefits of learning, and thus uncer-
tainties on the climate act as a driver for delaying abatement.
Learning is beneficial only if policy-makers preserve flexibil-
ity to adjust initially selected policy trajectories. Thus flexi-
bility has a value that should be explicitly presented in cost-
benefit analysis.

We discuss analytical approaches in association with the
issues for which each of them has a methodological advan-
tage. More precisely, our focus lies in the following: (1) non-
recursive stochastic programming (NSP) is the most common
approach for finding optimal decision under uncertainty in
IAMs and particularly useful for investigating the implications
of parametric uncertainty. We discuss NSP studies both with
and without learning about uncertainty. In many NSP analy-
ses, policy-making processes are represented as a binary de-
cision tree with anticipation of learning and possibility to
correct policy at the node of the tree, and this schematic
presentation of learning and irreversibility allows qualitative

analysis. By and large, NSP in IAMs shows that uncertainty
without learning favors stronger mitigation. The climate dam-
age uncertainty dominates the mitigation cost uncertainty.
Future learning about uncertainty has only a small effect on
the optimal level of mitigation unless a highly nonlinear
climate threshold is included in the analysis. Hence, learning
serves as an argument for neither deferring nor advancing
mitigation action. (2) This last conclusion changes in another
approach presented in Section 3, which applies real options
analysis (ROA) to IAMs. ROA highlights the value of flexi-
bility in future actions in the face of uncertain climate change
and could be regarded as an extension of a binary tree ap-
proach. In fact, a binary tree is the most refined way to explain
and option value formation. The analysis shows that substan-
tially stricter interim targets become economical if the value of
the option to switch to a laxer target later on is taken into
account. This result stems from the skewness and long upper
tail in the probability distribution of avoided damages. (3)
Stochastic dynamic programming (SDP) is the most compre-
hensive approach to uncertainty and discussed in Section 4.
The use of SDP is practically a necessity for investigating
implications of stochasticity, as it allows simulating many
plausible states of the world and selecting a policy that is less
exposed to uncertainties than others. However, given its
technical complexity, applications of this approach to
IAMs are still relatively few. Two studies show that learning
about key uncertainties in the climate problem might take a
long time if it takes a form of Bayesian learning from the
stochastic climate. SDP is also applied to analysis of a few
other problems, such as effects of unpredictable arrival of a
breakthrough clean technology on climate policy, effects of
climatic fluctuations on the decisions of the risk-averse agent,
and tipping-point risks of the climate or economic system
under climate change.

Studies that use those three approaches all suggest that an
intensity of abatement policy is “an increasing function” of
uncertainties on the climate and highlight importance of irre-
versibility in climate policy analysis. All three methods can
offer some valuable qualitative insights to policy makers and
provide some guidance in ongoing efforts to perform dynamic
stochastic optimization of IAMs.

This review limits its scope to the body of IAM studies on
uncertainty and does not cover the entire range of literature
about uncertainty and the economics of climate change.
Considering a methodological focus of the paper, we do not
discuss in detail the theoretical literature on the economics of
climate change and uncertainty, which is reviewed by other
authors such as Pindyck [56], Baker [11], and Heal and
Millner [27]. Also, in this paper, we only review the studies
on first-best climate policy, but there is an extensive literature
on the choice of policy instruments under uncertainty (see,
e.g., [29]). A recent special issue of this journal [25] also
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contains a number of articles concerning policy instruments or
portfolios of emission-reducing technologies.1

As the basis for the discussion of different approaches
below, we here give a generic formulation of an IAM. We
denote the utility function of the representative agent by u .
This could also be a multi-regional welfare function and
would then depend on the average consumption in the differ-
ent regions. We denote the pure rate of time preference by δ ,
time-step length by Δt , the vector of state and decision
variables at time t by Xt and I t, respectively, consumption
by c t, the vector of uncertain parameters by θ, stochastic
shocks by ηt and the measurement error by γt. The state
variables include the production capital and the atmospheric
carbon stock, for instance, while investments are formulated
as decision variables. We omit a time-varying population in
this article, which would simply lead to a time-dependent
factor to the utility function. Finally, the vector of messages
containing information about the uncertain parameters up to
time t is denoted by mt=(m1,…,mt). A generic stochastic
first-best IAM can then be written as

max
I t mtð Þf g

E0

X
t¼0

∞

e−δ tΔtu ct X t; I t m
tð Þð Þð Þ

( )

s:t: X tþ1 ¼ f X t; I t m
tð Þ; θð Þ þ g X tð Þηt

mt ¼ X t þ h X tð Þγt

ð1Þ

The expectation (E0) of utility is taken conditional on the
information available at time t =0. The first constraint in
Eq. (1) specifies the system dynamics, which contains both
uncertain parameters θ and a stochastic term η t. The measure-
ment error in the second constraint has not been considered in
IAMs yet and will also be neglected in the following. What
makes Eq. (1) difficult to solve is the fact that decisions I t
generally depend on the history of messages that have been
received.

2 Implications of Parameter Uncertainty: Non-recursive
Stochastic Programming

Numerical modeling of climate change uncertainty is so far
mostly based on stochastic programming, which denotes an
optimization including random parameters, whether it be un-
certain model parameters or stochastic shocks. We denote
methods that do not use dynamic programming, which is
discussed separately in Section 4, by non-NSP.

NSP is the simplest approach to actual optimization under
uncertainty and especially useful for the investigation of para-
metric uncertainty. As a similar and even simpler modeling
method, there is an approach called uncertainty propagation,
which performs optimization of policies for a large number of
possible parameter combinations individually and estimates their
probability-weighted sum (an early study that belongs in this
category is [69]). Just as sensitivity (or scenario) analysis, uncer-
tainty propagation is unable to take into account factors intrinsic
to decision making under uncertainty, such as learning and the
agent’s risk aversion. Still, uncertainty propagation (and also
sensitivity analysis) can show relative importance of various
uncertainties on climate change and thus is still widely used for
this purpose. In this paper, however, we do not discuss this
approach as our focus is the modeling frameworks in which
uncertainty actually influences the incentives of the decision
maker. See Kann andWeyant [31] and Peterson [54] for reviews
of studies based on uncertainty propagation. Recent studies that
adopt those approaches and are not listed in those references
include Nordhaus [51], McInerney and Keller [46], Newbold
and Daigneault [49], Ackerman et al. [1],Webster et al. [67], and
Anthoff and Tol [3].

2.1 Effect of Uncertainty on Optimal Policy

A few studies conduct NSP without taking learning about
uncertainty into account. The main question of these studies is
how uncertainty affects optimal policy in terms of timing and
stringency. Exclusion of learning from the modeling substan-
tially reduces the information dynamic complexity and thus
allows including multiple uncertainties and detailed system
dynamics.

NSP can be formulated as follows. First, a sample is drawn
from the joint probability distribution of all uncertain param-
eters θ and shocks η t. The sample points (θ s, η t,s) can be
called states of the world. We denote the probability of state s
by ps. Without learning and a with a finite time horizon T,
problem (1) then reads as

max
I tf g

E0

X
t¼0

T

e−δ tΔtu ct X t; I tðð Þ
( )

s:t: X tþ1 ¼ f X t; I t; θsð Þ þ g X tð Þηt;s
ð2Þ

1 As for the effects of uncertainty on policy instruments, the special issue
specifically includes two articles that address the issue of allocation of
emission allowances. Allowances allocation under uncertainty needs to
seek two competing goals of containing costs of climate policy and of
controlling the damage of climate change. Golub and Keohane [23] solve
the problem of allocation and size of allowances reserve for a given
countrywide emission trading scheme for containing price of carbon
allowances at the level not higher than a politically acceptable level with
a reasonable probability, Meanwhile, Aubin et al. [7] deal with the issue
of how to translate an overall climate mitigation objective into an alloca-
tion of emission reduction objectives among polluters. The study pro-
poses a method for dynamically allocating pollutant emissions rights
among polluters, given that the emissions growth rates of the various
polluters cannot be controlled, or even predicted. The problem is solved
with mathematical and algorithmic tools of viability theory. With given
maximum growth rates of emissions of each polluter in the worst case, the
method of these authors provides the allocation rule for emissions rights
and the required initial emissions.
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Pizer [57] shows a way to apply NSP by approximating the
optimal consumption paths under climate change policy by
analytical functions of the state variables. He finds the optimal
policy path under uncertainty by evaluating the intertemporal
welfare from the optimal consumption paths with differing
policies and inclusive of uncertainty. Taking account of vari-
ous forms of uncertainty, he finds that uncertainty justifies
roughly 30 % stricter emissions reductions.

Problem (2) can be further simplified by not actually
performing a continuous optimization but only finding the
most desirable policy in a given set of policies Ip. This is
called policy evaluation. However, whether the resulting pol-
icy approximates the optimal choice well is not clear, partic-
ularly in models with a high-dimensional decision space.
Gjerde et al. [22], for example, use this simplification to show
that a potential climate catastrophe justifies substantially
stronger mitigation action. They do not separate the effect of
uncertainty about this catastrophe, but it can be conjectured
that it strengthens the argument, because mitigation costs are
not uncertain in their study.

NSP can also be used to estimate the value of the imme-
diate and complete resolution of uncertainty. This is done
by comparing expected utility resulting from problem (2)
with the expectation of utility over separate deterministic
optimizations in each state of the world. Peck and Teisberg
[53] report for the CETA model that climate sensitivity and
climate damages are the most useful uncertainties to learn
about with values of about US$150 and 100 billion, respec-
tively. Gjerde et al. [22] report an even higher value of
learning about potential climate catastrophes of almost
US$600 billion.

2.2 Effect of Learning on Policy Stringency

By taking learning into account, NSP can address the ques-
tions of how future learning changes optimal near-term cli-
mate policy and of how valuable future information about
different uncertainties is.

Given the increasing computing power, NSP with learning
has becomemore widely applicable to IAMs in recent years. It
is still limited to a single or at most a few learning steps,
though, and information arrives continuously in reality.
However, information pooling and climate policy formation
are slow processes. The IPCC publishes its reports every
7 years, it took five years to negotiate the Kyoto Protocol,
15 years to build consensus on the 2 °C threshold as a long-
term environmental target, and it may still take several
years to get the major developing countries to commit to
absolute emission targets. In this light, it might not be
unrealistic to assume that an initial near-term climate policy up
to 2030 or 2050, for instance, is revised only once or a couple
of times.

For one learning step and only parametric uncertainty, we
can rewrite Eq. (1) as

max
I jtf g

X
i

qi
X
j

pij
X
t¼0

T

e−δ tΔtu ct X t θ j

� �
; I it

� �� �
;

s:t: X tþ1 θ j

� � ¼ f X t; I
i
t ; θ j

� �
;

∀t < tl : I
l
t ¼ I1t ;

ð3Þ

where qi and pj
i are the probability of message i and the

probability of state of the world j after receipt of message i ,
respectively. The latter is characterized by the vector of pa-
rameter values θj.

The last constraint in (3) ensures that decisions can only be
tailored to the individual messages after receiving them at time
t l. This “trick” is sometimes called “discrete stochastic pro-
gramming” and was first proposed by Cocks [15]. It allows
solving recourse problems such as (3) by efficient optimiza-
tion solvers in modeling systems such as AMPL and GAMS.
This in turn allows using IAMs with comparably high system
dynamic complexity and often without changing the modeling
system. However, the number of decision variables and con-
straints increases exponentially for more than one learning
step quickly rendering the problem unsolvable. For several
learning steps, solution methods based on a recursive formu-
lation are superior (see Section 4).

The formulation in Eq. (3) is particularly suited to consider
parameter uncertainty but could in principle also be used to
incorporate stochasticity. For example, Fisher and Narain [18]
model stochasticity of damages in a two-period setting and
investigate the effects of learning and also of sunk abatement
capital. They find that the effect of sunk capital is stronger
than the effect of uncertainty of future damages and also that
of learning. As a stochastic process introduces a random shock
for each time-step, however, a sufficient sample would render
the sums in Eq. (3) unmanageable. Therefore, recursive
methods are the preferred choice if stochasticity is considered
(see Section 4).

Considering only one learning point as in (3) simplifies not
only the solution but also the interpretation of results. It makes
the distinction between the four cases shown in Fig. 1 partic-
ularly intuitive: (a) the deterministic case, in which the uncer-
tain parameters are fixed at their expected value. This is the
blue line in Fig. 1. (b) The case without learning, in which the
parameters are uncertain and uncertainty is not resolved. This
is the green line in Fig. 1. (c) The case of non-anticipated
learning, in which the uncertainty is at least partly resolved but
this is not anticipated. Decisions before learning coincide with
decisions without learning. These are the orange lines. (d) The
case of anticipated learning, in which learning is additionally
anticipated, potentially leading to different optimal pre-
learning decisions. These are the red lines in Fig. 1. The key
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results are differences in optimal policies in these scenarios
and the associated welfare differences.

More specifically, we can distinguish two effects. Firstly,
static uncertainty has an effect on optimal emissions and
associated welfare as compared with the deterministic scenar-
io. This is the difference between the blue and the green line in
Fig. 1. This effect stems from the nonlinearity of the objective
function in the uncertain parameters and is also investigated in
uncertainty propagation. It is generally found to be small in
studies using NSP [44, 52, 64, 65]. Uncertainty propagation
has shown that uncertainty can have a substantial effect on
optimal emissions. This indicates that the smallness of the
effect of uncertainty in NSP studies is likely to be at least
partly because of a crude representation of uncertainty.

Secondly, learning has an effect on optimal emissions as
compared with the no-learning case. This is the difference
between the green and the red lines. The associated welfare
increase is called the expected value of information (EVOI).
The EVOI is generally found to be significant. Particularly
learning about climate damages and climate sensitivity are
found to be very valuable compared with current research
budgets. This was shown in different IAMs by Nordhaus
and Popp [50] and Lorenz et al. [44] among others.

The effect of learning can be decomposed into two parts.
Firstly, optimal policy after learning will depend on what is
learned. This is the difference between the orange lines and the
green line. The associated welfare difference can be called an
option premium, which is further discussed in Section 3.

Secondly, anticipation of future learning changes optimal
near-term climate policy before learning. This is the difference
between the orange and the red lines. The associated welfare
increase can be called the expected value of anticipation.
Anticipation of learning is valuable if decisions are irrevers-
ible and anticipation generates flexibility. There are two main
irreversibilities involved in the climate problem that counter-
act each other. Investments in mitigation, which are at least
partly sunk, and emissions stay in the atmosphere for decades
to centuries. As a result, most studies performing cost-benefit
analysis find that anticipation of learning has only a small
effect on optimal emissions [44, 52, 63–65].

However, a substantial effect of anticipation on optimal near-
term policy was shown in the presence of an irreversible climate
threshold with uncertain corresponding damages [17, 33, 44]. A
stricter policy can then be justified because it keeps the option
open to avoid the threshold if it is learned to be severe.

A strong effect of anticipation is also found in studies
performing cost-effectiveness analysis in general that find
lower optimal emissions with uncertainty and learning (parts
of [13, 65]). However, Schmidt et al. [60] argue that these
latter results should be taken with caution because they stem
from a disputable interpretation of climate targets under un-
certainty as strict targets that have to be met with certainty.

The studies discussed so far in this subsection concern
uncertainties in the effects of climate change, but similar
modeling frameworks could also be applied to a related ques-
tion of uncertainty on the potentials of carbon dioxide capture
and storage (CCS), which could substantially affect the overall
costs of long-term climate change mitigation. Studies that
address the latter question utilize stylized scenarios that rep-
resent uncertain properties of CCS and of climate change and
consider that the decision maker learns at a certain time point
which scenario is a true one. Gerlagh and van der Zwaan [21]
examine the optimal climate policy and use of CCS under
uncertainties in the leakage rates of carbon dioxide from
geological reservoirs also in the damage of climate change,
They consider that revelation of uncertainties, which are rep-
resented by four potential cases, takes place in 2050 and
estimate long-term implications of carbon dioxide leakage
up to the year 3000. Meanwhile, Keppo and van der Zwaan
[35] investigate a similar question to that of Gerlagh and
van der Zwaan but treat the availability of CCS storage sites,
rather than the leakage rates, as uncertain. By employing a
bottom-up model and assuming six potential cases among
which a true case becomes known in 2040, they mainly
discuss potential deployment of CCS in the first half of the
twenty-first century

Although their analysis is not narrowly a study of NSP,
Babonneau et al. [9] could also be placed in this strand of
literature. They combine NSP and simple Monte-Carlo simu-
lations to assess the impacts of multiple uncertainties in cli-
mate change and energy technologies on climate policy.While
they model technology uncertainties in a basic Monte-Carlo
fashion, they analyze the uncertainty of the climate sensitivity
(represented as four potential cases) with NSP by assuming a
learning process that reveals the true level of the climate
sensitivity in the year 2030.

While NSP is a powerful tool for investigating some im-
portant questions of climate policy and uncertainty, it also has
limitations. As learning is exogenous in NSP, it is not suitable
for studying learning about technologies. Uncertainty about
the floor costs and learning rates of technologies is mostly
reduced by applying them. However, NSP does not estimate

Fig. 1 Scheme of optimal emissions in different scenarios. The cases
with learning are depicted for only two messages
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what can be expected to be learned. It uses the learning rates as
an input.

3 Value of Flexibility: Real Options Analysis

ROA uses methods from financial option pricing, in partic-
ular contingent claims analysis, to value the managerial
flexibility inherent in real investment decisions.2 It sometimes
also uses SDP, which we discuss separately in Section 4. ROA
also provides a language and intuition for talking about this
flexibility.

ROA is widely applied to analyses of the energy market,
including those involving climate or renewables policy [20,
37, 40, 58, 59, 61]. In those studies, the authors analyze the
portfolio choice of energy technologies by applying ROA.
Climate change is sometimes explicitly incorporated in their
analysis in the form of stabilization targets of atmospheric
carbon dioxide concentrations—in other words, an overall
climate policy is given. Meanwhile, the ROA concept is also
useful for investigating the targets of the first-best climate
policy, which are the focus of this paper. To investigate the
first-best policy (climate targets), one can think of it as a
continuum of real options on different levels of the stabiliza-
tion target. Accumulation of an additional amount of emis-
sions in the atmosphere kills some options (for example, any
target below 400 ppm might become infeasible) and also
makes other targets (say below 500 ppm) less realistic. In
other words, by continuing emissions, the economy continu-
ously loses options on the stabilization target and concurrently
experiences the damage that is equal to the economic value of
lost options. An example of this type of analysis is Anda et al.
[2], on which the description below is based.

The simple example depicted in Fig. 2 demonstrates the
option value concept. There is uncertainty about climate sen-
sitivity (CS), which can only take one of three possible values.
The true value is learned in 2050. The mitigation costs of an
interim target up to 2050 are $35 trillion. Benefits in the form
of avoided climate damages accrue only after 2050 and depend
on the true value of climate sensitivity. Adoption of the long-
term target whatever the value of CS has a negative NPV
of -$35+¼ $123+½ $24+¼ (−$45)=−$3.5 trillion. This as-
sumes risk-neutrality for simplicity and would have to be risk-
adjusted under risk aversion. If we add the option to abandon
the target for a looser one with zero NPV if the post-learning
NPV of the target is negative, we get an expanded NPV of
−$35+¼ $123+½ $24+¼ (−$0)=$7.75 trillion. Thus, the
option premium is $11.25 trillion. Given this premium, it is
economical to adopt the target as an interim target but not as a
one-shot, long-term target.

The interim target can be seen as a European option on the
long-term target. It is the option but not the obligation to adopt
the long-term target at a given future time. The time of
expiration is 2050. We say the option is executed if the target
is abandoned (put option). The strike price is then the NPVof
the best alternative, which is assumed to be zero for simplicity.

The value of an option depends on the volatility and price
of the underlying asset. For financial options and in standard
ROA these characteristics can be observed in markets, or at
least the characteristics of a highly correlated twin security.
There are, of course, no markets for long-term climate targets,
though, but one can derive the characteristics from an IAM.

This is done by a Monte-Carlo simulation of the policy
under consideration denoted by Ip. The NPVof the target right
after learning the true state of the world θs at t l is obtained by
discounting net benefits over business-as-usual (IBAU) at the
ex post risk-free rate rs,t,

NPVep tlð Þ ¼
X
t¼tl

T

e−rs;t t ct θs; I
pð Þ − ct θs; I

BAU
� �� � ð4Þ

c (θs, I
P) denotes the net value of policy IP at time t and

c (θs, I
BAU) stands for the net value of the business as usual

emissions scenario, that is only the damage as there is no
abatement cost.

This is the random price of the underlying asset right after
learning. The NPV of the target right before learning is ob-
tained by discounting certainty equivalent benefits at the ex
ante risk-free rate r t

NPVea tlð Þ ¼
X
t¼tl

T

e−rt t ct I
pð Þ − ct I

BAU
� �� �

ð5Þ

This is the spot price of the target right before learning. The
NPVof the costs of the interim target is given by

NPVcos ts t ¼ 0ð Þ ¼ −
X
t¼0

tl

e−rt t ct I
pð Þ − ct I

BAU
� �� �

ð6Þ

c denotes the expected value of policy cost.
If the probability distribution of benefits (Eq. 4) can be

approximated by a convenient distribution function, one can

2 There is a closely related theoretical literature on the quasi-option value
in environmental economics [4, 28]; see [5] for the relation to ROA).

2010 2050

Adopt target:
NPV=$123

Adopt target:
NPV=$-45,
Switch to looser target:
NPV=$0 

Adopt target:
NPV=$24

p=¼; CS=4.3

p=½; CS=3.0

p=¼; CS=2.2

Costs:
NPV=-$35

Fig. 2 Simple demonstration of the option value of an interim target.
CS=4.3 with probability ¼, CS=3.0 with probability ½, and CS=2.2
with probability ¼
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use analytical option pricing formulas. Most option pricing
formulas, including Black–Scholes’s, imply non-negative
prices. The price of a long-term target, however, can be
negative. To deal with those negative values, Anda et al.
separated the benefit component of climate policy NPV (i.e.,
the avoided damage) from the cost component (the abatement
cost). Now for each policy target both categories are positive,
and more advanced option pricing formula can be applied.

Alternatively, Bachelier’s model that allows a negative
value for underling asset could be applied. However, in this
model, the prices are normally distributed. Restriction on the
distribution limits the ability to study tailed risks of climate
change and only illustrates the role of the first and the second
moments of NPV distribution. If we denote the strike price by
K , and the volatility of the asset, i.e. the standard deviation of
NPVep, by σ , Bachelier’s formula for the value of the option
right before learning reads

VB ¼ NPVea − Kð ÞΦ NPVea − K

NPVeaσ

� �
þ NPVeaφ

NPVea − K

NPVeaσ

� �
;

ð7Þ
where Φ and ϕ are the cumulative distribution function and
the probability density function of the standard normal distri-
bution, respectively, and where we have omitted the time
argument of the NPV. As we consider an instantaneous reso-
lution of uncertainty, neither the time to expiration nor the
interest rate occur in the pricing formula. The interim target
should be adopted if

NPVcos ts þ VB > 0: ð8Þ
Considering a long upper tail in the probability distribution

of climate damages, a normal distribution for the benefits of
climate policy is not realistic and Bachelier’s model underes-
timates the option value of an interim target. Anda et al. [2]
show that more sophisticated pricing models taking higher
moments of the distribution into account lead to substantially
higher option values. ROA has two major advantages over
SDP. First, it does not demand a stochastic optimization but
only a Monte Carlo simulation. Second, it allows consider-
ation of continuous distribution functions with tails in analyt-
ical option pricing formulas. In addition, it provides a clear
intuition and quantification of flexibility as an option value.

However, in the method summarized above, the target and
the decisions to reach were only evaluated and not derived in
an optimization. Thus to this estimation itself does not tell
whether the decisions are efficient and the target optimal.
However, if the option value could be expressed as a function
of the expected value, then options value could be added to the
damage function and to the abatement cost function then we
can solve an optimization problem as a deterministic problem.
See Anda et al. [2] for conditions under which the method can
be extended to an optimization.

The ROA of the first-best climate policy targets by Anda
et al. [2] reveals that an upper tail in the avoided damage
distribution leads to a large option value and thus justifies an
aggressive interim target even without risk aversion.

4 Implications of Stochasticity: Stochastic Dynamic
Programming

The approaches we have discussed up to now are not suitable
for taking stochasticity and the repeated and endogenous
updating of probability distributions into account. SDP is
preferred for the examination of such high information dy-
namic complexity. The SDP approach models stochasticity by
utilizing a recursive formulation of the problem, which is that
immediate actions are taken based only on the current situa-
tion (rather than the entire history), in other words, the deci-
sion problem of the same structure recurs each period. While
most current debates on uncertainty in climate change deal
with parametric uncertainty, many aggregate processes in the
climate system and the economy are also stochastic. Modeling
of stochasticity can answer some interesting research ques-
tions, such as to what extent stochasticity of the climate
system hinders the resolution of parametric uncertainty and
how it changes the optimal decisions.

In SDP modeling, the value function is defined as the
maximum utility that can be obtained given the current state
of the system including the probability distributions on the
uncertain parameters. This reads as

J X 0ð Þ ¼ max
I t mtð Þf g

E0

X
t¼0

∞

e−δ tΔtu ct X t; I t m
tð Þð Þð Þ ;

s:t: X tþ1 ¼ f X t; I t m
tð Þ; θð Þ þ g X tð Þηt;

ð9Þ

where it is presumed that the time horizon is infinite and the
value function does not depend on time explicitly. Using the
value function and the principle of optimality,3 we can rewrite
problem (9) recursively as in the following Bellman equation

J X tð Þ ¼ max
I

u ct X t; Iðð Þ þ e−δ ΔtEt J X tþ1ð Þ� 	
;

s:t: X tþ1 ¼ f X t; I t; θð Þ þ g X tð Þηt;
ð10Þ

where for simplicity and clarity we omitted the system and
information dynamics.

For simple models, the Bellman equation can be solved or
exploited analytically, whose examples are Dixit and Pindyck
[16] and Pindyck [55]. Karp and Zhang [32], who use a linear-
quadratic multi-period IAM, could also be placed in this
category. They find that anticipation of learning about climate
damages decreases optimal abatement by about 10–20 %.

3 The mathematical conditions for which the principle of optimality holds
can be found, e.g., in Stokey and Lucas [62].
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In more complex models, the value function has to be
analyzed numerically. This requires an approximation meth-
od, as Eq. (10) is only a functional equation and does not give
the functional form of J . A straightforward computation of
backward induction that reflects all nodes of the decision tree
is normally not feasible for such problems as the number of
nodes becomes extremely large for multiple state, control and
random variables and a number of time steps.

As one approach of approximation, Webster et al. [66]
utilizes an approximate dynamic programming framework,
which is to find the value function through iterations of
random sampling on the levels of the policy variable and
shocks. By using a seven-stage model, they study the effects
of stochasticity on the optimal climate policy and conclude
that conventional two-stage models are prone to underesti-
mate the effect of uncertainty.

Meanwhile, most other existing studies of SDP in the
climate change context employ another approach, with which
the value function is approximated in a composite of functions
of given forms, such as Chebyshev polynomials, with a set of
coefficients to be specified through a fitting process. To find a
solution, one starts with a guess of the value function, applies
it to the right-hand side of Eq. (10) for selected combinations
of state variables, calculates the error, and obtains a new guess
for the value function until the algorithm converges. Thereby,
the value function is parameterized. See Judd [30] for details
of the methodology.

As for investigating the effect of learning, SDP has the
advantage that it can take into account endogenous and re-
peated updating of uncertainty. So far, however, SDP is only
applied to a specific aspect of learning on climate change,
which is the Bayesian learning of the climate sensitivity from
observed temperature fluctuations. Kelly and Kolstad [34]
explicitly model the stochasticity of the temperature process
and the Bayesian updating on climate sensitivity in DICE.
They find that learning the true value of climate sensitivity
takes at least 90 years. They also show a trade-off between
emissions control and the speed of learning. Meanwhile,
Leach [39] extends the analysis to two uncertain parameters
in the temperature process and shows that this can delay
learning by hundreds or even thousands of years.

SDP is a suitable method also for investigating how
stochasticiy changes the optimal policy decisions. Given the
methodological complexity, however, the number of SDP
studies that analyze stochasticity is still limited. Bahn et al.
[8] discuss an IAM where stochasticity is represented as two
jump processes regarding the revelation of climate sensitivity
and technological breakthrough. Their model analysis com-
pares two types of precautionary actions, one about climate
change mitigation and the other about R&D investment in
clean technologies. Meanwhile, Lontzek and Narita [43] ex-
amine the optimal climate policy in direct response to contin-
uous fluctuations of the climate system (in some parallel to

Kelly and Kolstad and Leach, where the climate sensitivity
parameter is estimated from climatic fluctuations) by using a
continuous-time SDPmodel. They show that stochasticity has
only a small and ambiguous effect on optimal emissions
reductions as compared with the deterministic case (without
shocks), while the sign of the effect is partly determined by the
level of risk aversion.

As the most recent development in this strand of research,
Lemoine and Traeger [41] and Cai et al. [14] investigate
effects of tipping-point climate change risks, i.e., potential
permanent shifts of the climatic or economic system that
would set in with an increasing likelihood linked to the degree
of climate change. They both extend the deterministic DICE
model to allow for stochastic time paths of multiple state
variables. Their results show that the inclusion of tipping-
point risks in the model estimation generally raises the level
of the optimal climate policy substantially.

5 Summary and Conclusions

We have reviewed probabilistic approaches to uncertainty in
integrated assessment models and their respective implica-
tions for climate policy.

Non-NSP is the simplest way to take uncertainty and
learning into account in IAMs. Uncertainty generally, and
not surprisingly, justifies stronger emissions reductions.
Estimates of the extent, however, vary from very little up to
30 % depending on how many uncertain parameters and
sample points are considered. Future learning is generally
found not to be a significant factor to promote more or less
mitigation unless potential climate thresholds are taken into
account. However, learning can have an impact on the effi-
cient mitigation portfolio, and the optimal level of R&D in
particular.

We have then discussed a way to apply ROA to IAMs. It is
characterized by the use of financial option pricing methods to
value the option of adjusting policy to future learning. It
allows a more comprehensive consideration of uncertainties
than discrete stochastic programming, and the representation
of tails in particular. It shows that future learning can then be
an argument for substantially stronger short-term emissions
reductions. Up to now, it has only been used to evaluate given
policies. Its application with a direct optimization might be a
promising extension.

Whenever stochasticity is taken into account, possibly in
conjunction with the endogenous resolution of uncertainty, dy-
namic programming is the preferred, or rathermandatory, choice.
We have briefly discussed methods of SDP. It has been used to
show that learning about climate uncertainty may take a very
long time up to thousands of years. SDP is the most complete
approach among the three approaches we have discussed and
can in principle supersede the others. However, in practice, it
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could be rather seen as a complement to the other two ap-
proaches as it involves complex computation and its results
tend to be less clear and intuitive than those of the other two.

The most important general policy implication from the
literature is that despite a wide variety of analytical approaches
addressing different types of climate change uncertainty, none
of those studies supports the argument that no action against
climate change should be taken until uncertainty is resolved.
On the contrary, uncertainty despite its resolution in the future
is often found to favor a stricter policy.

Research on this subject is not complete yet. An important
issue that is becoming recognized and has yet to be explored
further in the context of IAMs is the optimal climate policy
under deep uncertainty. Scientific consensus rarely exists
about the probability distributions of climate responses to
anthropogenic interference and climate change impacts, but
standard approaches based on expected utility theory do not
capture such divergence of scenarios [36]. The critical mean-
ing of incomplete information on potential extreme outcomes
of climate change is also well illustrated by Weitzman [68],
who shows that expected utility optimization may not yield
finite solutions when complete information does not exist
about the tails of probability distributions for climate change
related parameters. Conceptual frameworks on finding favor-
able climate policy under deep uncertainty have been de-
scribed by some authors [38, 42, 45], and there are also some
recent studies that attempt to findmore numerical implications
[6, 19, 24, 41, 47, 48].4 However, with the exception of
Lemoine and Traeger [41], these studies are based on simple
modeling methods that do not reflect varied degrees of flexi-
bility in policy decisions over time or stochasticity of the
climate system. The approaches to model deep uncertainty
generally use a range of possible probability distributions for
each parameter, which are weighted according to either some
decision criteria (such as a focus on the worst cases) or some
preference parameter (such as the ambiguity aversion). In
principle, such formulations of problems do not prohibit ap-
plications of ROA and SDP, and those two approaches could
in fact shed more light on problems of deep uncertainty
associated with irreversibility of mitigation decisions or with
stochasticity of the climate system.

There are also a number of other future research needs
concerning first-best climate policy under uncertainty. (1)
Learning about some uncertainties is endogenous. Risks of
geoengineering options will be fully known only after they
are applied. The maximum efficiency of various renewable
energy technologies will be learned only if the technologies

are applied on a large scale (see also [12]). Modeling endoge-
nous learning demands SDP, in which the inclusion of suffi-
cient climatological or technological detail poses a great chal-
lenge. In addition, endogenous technical change generates
nonconvexities in the optimization problem, which demand
global optimization solvers. (2) What are the implication of
uncertainty and learning for first-best climate policy in devel-
oping countries? Significant short-term policy of emission
control might steer developing countries into low-carbon eco-
nomic growth and prevent a lock-in to carbon-intensive pro-
duction capital. The associated benefits could be estimated by
discrete stochastic programming or real options analysis. (3)
The question of how alternative preferences, such as habit
formation, direct utility from an environmental good, distinc-
tion between risk aversion, and intertemporal elasticity of sub-
stitution and others change optimal policy under uncertainty
has not yet received sufficient attention but should be explored.
(4) The analysis of the persistent stochasticity both of the
climate system and the economy is still in an initial stage, and
investigations of its implications for climate policy in more
complex IAMs are needed. (5) Finally, there is a strong need for
reliable probability estimates for the key parameters of IAMs,
especially the climate change damage parameters.
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