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1 Introduction

A specific feature of subjective expected utility (SEU) is that risky and riskless options are evaluated

by the same von Neumann-Morgenstern utility function. Already Savage (1954) and Luce and Raiffa

(1957) explicitly noted that this function does not necessarily measure strength of preference for

certain outcomes as it reflects both attitude towards wealth and risk attitude. Consequently, a concave

utility function may merely result from decreasing marginal utility of wealth and need not reflect an

intrinsic aversion towards risk (Dyer and Sarin, 1982; Yaari, 1987). Likewise most non-expected utility

alternatives to SEU do not distinguish between risky and riskless utility and, thus, cannot separate

attitudes towards risk from attitudes towards wealth entirely.

We propose a model, called chance theory (CT), that distinguishes markedly between riskless and

risky utility. CT provides a foundation for preferences over acts that depend on their worst outcome

evaluated with a value function  and the chances to improve upon that worst outcome. These chances

are attached to the possible increments above the worst outcome and are evaluated by SEU with a

utility function  defined over those improvements. We call the function  the utility for wealth and

the function  the utility for chance. CT generates a separation of attitudes towards wealth and risk

attitudes as the latter are completely determined by the curvature of  and independent of , while

the curvature of  reflects only attitudes towards wealth independently of . Like SEU, CT implies

the existence of additive subjective probabilities.2 Even with additive probabilities and reference

independent risk attitudes, CT can accommodate the paradoxes of Allais (1953) and Rabin (2000),

and therefore can be regarded as a descriptive alternative to SEU.

Empirical evidence suggests that there may be a fundamental difference between riskless and risky

utility. For instance, the common consequence and common ratio effect of Allais (1953) rely on the

2Generalizations to non-additive probability measures as in Choquet expected utility (Schmeidler, 1989), in order to

allow for ambiguity attitudes (Ellsberg, 1961), are possible in our framework. Likewise, more descriptive generalizations

that assume reference-dependence such as in prospect theory (Tversky and Kahneman, 1992), can be derived. As our

aim is to focus on a separation of globally consistent risk attitudes and to allow for a direct comparison of CT and SEU,

we leave the extension to ambiguity and reference-dependence for future research.
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existence of safe options. If these options are moved slightly away from certainty, the violation rate of

expected utility (EU) is dramatically reduced (Cohen and Jaffray, 1988; Conlisk, 1989; Andreoni and

Sprenger, 2010). In general, EU seems to perform rather well when only risky options over common

outcomes are considered (Camerer, 1992; Hey and Orme, 1994; Harless and Camerer, 1994; Starmer,

2000). More direct evidence for a fundamental difference between riskless and risky utility is given

by the uncertainty effect (Gneezy et al., 2006; Simonsohn, 2009) where risky options are valued less

than their lowest prize is valued under certainty. Also Andreoni and Sprenger (2012) and Andreoni

and Harbaugh (2010) find evidence for a disproportionate preference for certainty and propose to use

different utility functions for riskless and risky options.

The focus on the worst possible outcome has already been discussed in the theoretical and empirical

literature and has been incorporated in various models. Managers disregard investment opportunities

that are likely give losses (Payne, et al. 1980, 1981). They are concerned by what in psychology

literature is called the security level (Lopes, 1987). Lopes gives the example of farmers, who are

particularly concerned with ensuring a certain subsistence level rather than with investing solely in

potentially profitable crops. Lopes regards the security motivation as corresponding to weighting the

worst outcome in a lottery more heavily than the best outcomes. Moreover, she argued that “sure

things have powerful influence in organizing choice” (Lopes 1987, p.278); certainty is special as it allows

one to plan, or proceed with plans, without being held back by uncertainty which, by definition, still

has to resolve before moving on. The security level plays an important role in several alternatives to

expected utility (Jaffray 1988; Gilboa, 1988; Cohen, 1992) but unlike CT these models do not separate

riskless and risky utility. Recently, a preference for certainty has been incorporated in the models of

Dillenberger (2010) and Cerreia-Vioglio et al. (2013).

The focus on the worst outcome also appears in social welfare analysis in the context of inequality

measurement (Rawls, 1971) and in finance (Roy, 1952). Worst outcomes receive special attention also

in models of ambiguity aversion (Gilboa and Schmeidler, 1989), and, more recently, in adjustments of

3



EU by keeping “the best and worst in mind” (Chateauneuf, Eichberger and Grant, 2007; Webb and

Zank, 2011). In these latter theories attention is also given to best outcomes (see also Lopes, 1987).

Our version of CT does not give special attention to the best outcome, however, the tools presented

in this paper can be used to develop extensions of CT that incorporate such potential concerns.

Several axiomatic models that distinguish between riskless and risky utility have been proposed

in the literature (Fishburn, 1980; Schmidt, 1998; Bleichrodt and Schmidt, 2002; Diecidue et al.,

2004). These models are mainly motivated by the utility of gambling, i.e. an intrinsic utility or

disutility of risk (see also Conlisk, 1993; Luce and Marley, 2000). Apart from Bleichrodt and Schmidt

(2002) these models assume that safe options are evaluated by a riskless utility whereas risky options

are evaluated by the risky utility. If the two utilities are distinct, discontinuities and violations

of first-order stochastic dominance are implied. This shows that the purpose of those models is

mainly descriptive. However, transparent violations of dominance, as implied by those models, are

observed extremely rarely in empirical research. The model of Bleichrodt and Schmidt (2002) implies

intransitive preference cycles which are opposite to the cycles reported in the experimental literature

(Starmer and Sugden, 1989). Consequently, also that model has drawbacks from a normative and

from a descriptive perspective.

CT avoids violations of transitivity and of monotonicity. In fact these properties are explicitly

employed. They are complemented (in addition to completeness and continuity) with variants of two

familiar principles. The first, a strengthening of the weak cancellation property (Krantz, et al. 1971),

ensures that the riskless component of an act (i.e., the worst outcome) is additively separable from its

risky remainder and, moreover, that this riskless component is independent of the event that gives the

worst outcome. This allows for the interpretation of  as measuring the strength of preference for sure

outcomes. The second principle invokes a consistency requirement for potential increments beyond

the riskless outcome of an act. Variants of the latter principle have been employed for derivations of

subjective expected utility and other generalizations relying on continuous cardinal utility (see Wakker
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2010). Here, this consistency requirement allows, as in SEU, to identify a unique probability measure

for events and a cardinal measure, , for improvements beyond the worst outcomes. The latter can

then be given the interpretation as capturing risk attitude beyond attitude towards wealth.

The interpretation of outcomes in an act as a sure outcome plus potential improvements has several

implications for CT-preferences. These are best seen if one assumes decision under risk with objectively

given probabilities. Then a clear separation between attitudes towards wealth and attitudes towards

chance is obtained. For instance decreasing absolute risk aversion demands that the function  is

concave, while it has no implications for the curvature of the utility of chance . In that case, a

simple application to consumption saving decisions shows that CT-preferences imply prudence, that

is, if future income becomes more risky a consumer will save more in the current period (Kimball,

1990). Thus, without knowing the precise shape of the utility for chance one can, from the first and

second derivative of the utility of wealth, directly infer whether CT-individuals are precautionary

savers, and no higher order derivatives, as in EU, are required. In contrast, demanding aversion to

mean-preserving spreads (Rotschild and Stiglitz, 1970) implies that the utility of chance  is concave;

no further implication for the utility of wealth  are obtained.

This specific separation into wealth and chance attitudes under CT implies one restriction: irre-

spective of the curvature of  and of , at all wealth levels the effect of marginal change in wealth

is at least as large as the effect of a corresponding marginal change is on the chance utility. That is,

utility of wealth is always at least as steep as the utility of chance. One implication of this relationship

between the different utilities is that CT-preferences always display an attraction to the expected value

of a lottery, i.e., weak risk aversion holds as standard assumed in economics. This is in agreement

with most applications of expected utility theory where a concave utility is typically assumed (e.g.,

Arrow, 1965, Pratt, 1964) and has a long tradition dating back to Bernoulli (1738, 1954).

The next section introduces our notation and introduces CT formally. Implications of CT for

wealth and risk attitudes are presented in Section 3 where also the explanation of the Allais (1953)
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and the Rabin (2000) paradoxes are reconsidered. Section 4 provides a behavioral foundation for

CT. This is followed by a discussion and conclusions in Sections 5 and 6, respectively. All proofs are

relegated to the Appendix.

2 Outline of Chance Theory

We consider a finite set of states, S = {1     }, for a natural number  ≥ 3, and A = 2S is the

algebra of subsets of S.3 Elements  ∈ A are called events. An act  assigns to each state a real

valued outcome. The set of acts F can be identified with the Cartesian product space R, and hence,

we write  = (1     ), where  is short for (),  ∈ S.

In CT it is assumed that the decision maker first focuses on the worst outcome when choosing

between acts. This is psychologically plausible give the evidence reported in the introduction. Suppose

act  has its worst outcome  in state . Then  can be regarded as the risk-free wealth of the

decision maker when choosing  (or the part of the act that can instantly be integrated into current

wealth holdings) and  −   6=  are the possible improvements in the other states (for which the

integration into current wealth is prevented by uncertainty that needs to be resolved). Therefore each

act is interpreted as offering a sure outcome and separately a chance for improvements. CT is based

on preference conditions such that a decision maker evaluates risk-free wealth with a utility function

 and possible increments with a subjective expected utility like evaluation based on a utility function

 for chances. Specifically, Chance Theory holds if all acts  are evaluated by

 () = () +
X
∈S

( − ) (1)

where state  is the state with the worst outcome of  ,   ∈ S, are the (positive) subjective

probabilities of the decision maker generated by a probability measure P over events, the (riskless)

3Our results can be extended to infinite state spaces by using tools presented in Wakker (1993b) and Spinu (2012).

Identical results for the case of decision under risk, that is, when (objective) probabilities are given, can be derived by

applying the procedure of Köbberling and Wakker (2003, Section 5.3).
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utility for wealth,  : R→ R, is strictly increasing and continuous, and the (risky) utility for chance,

 : R+→ R+, is strictly increasing and continuous with (0) = 0. Further, as we demand that  is

increasing in each outcome,  and , are related as follows: for all  ∈ R     0

( + )− ()  max
∈S

{
X
6=

}[()− (− )] (2)

Under CT the subjective probability measure is uniquely determined and the utility functions are

jointly cardinal with location constraints applying to  (i.e.,  and  can be replaced by ̃ =  + 

and ̃ =  whenever   0 and  ∈ R).

It is intuitively plausible that a decision maker focuses on the worst outcome and evaluates pos-

sible increments separately and with a different utility function. A similar segregation procedure is

informally discussed in the editing phase of prospect theory (Kahneman and Tversky, 1979). For acts

which have only two strictly positive outcomes (1 and 2), the minimal gain (say 1) is segregated

in prospect theory and and the representation becomes  (1) + 2( (2)−  (1)), where  denotes

the prospect theory value function. Our representation differs by the fact that we obtain two separate

utility functions  and  and that incremental gains are evaluated directly by  and not by their value

difference. Of course a further difference is that in CT the worst consequence is always segregated,

even if some outcomes in the considered act are negative. However, outcomes in our framework are

interpreted final wealth positions and not in terms of gains and losses relative to a reference point as

in prospect theory. Due to limited liability, final wealth should become negative only in exceptional

cases.

2.1 Implications for Decision under Risk

For illustration purposes and for further reference it is useful to consider the implication of In-

equality (2) for the case of decision under risk. There, the preference < is defined over lotteries

 = (1 1;    ;  ), i.e., finite probability distributions over monetary outcomes. In that case the
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lottery  = ( ; 1−
−1   + ;    ; 1−

−1   + ), with  ∈ R, 0     and 0    1, is evaluated as

 () = () + (1− )()

An improvement of  in the outcome  that obtains with probability  gives the lottery 0 = (  +

; 1−
−1   + ;    ; 1−

−1   + ) that first order stochastically dominates  and has the worst outcome

 + . The CT-value of 0 is

 (0) = ( + ) + (1− )(− )

As CT satisfies strong monotonicity it follows that  (0)   (), or equivalently that

( + )− ()  (1− )[()− (− )]

The latter inequality holds for any  ∈ (0 1) and, thus,

( + )− () ≥ sup
∈(01)

{1− }[()− (− )]

follows. We conclude that for decision under risk, the analog condition to Inequality (2) for CT is

( + )− () ≥ ()− (− ) (3)

for all  ∈ R     0.

Altogether, condition (3) is rather strong as it demands that the minimal slope of  is at least as

large as the maximal slope of . This means that  cannot be too concave or  too convex without

violating (3). A similar conclusion can be drawn directly from Inequality (2) if the set of states is

sufficiently rich as, e.g., in Savage’s (1954) subjective expected utility.
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3 Attitudes towards Wealth and Risk

This section mainly assumes CT for decision under risk to ensure comparability with previous studies.

We employ the tools of Wakker (1993b) and Köbberling and Wakker (2003) and consider CT for given

probabilities and a rich state space. For simplicity and expositional convenience, we also assume that

the wealth utility  and the chance utility  are twice continuously differentiable.

3.1 Weak Risk Aversion

It is common to distinguish between weak and strong risk aversion. Weak risk aversion holds if

an act is always dispreferred to receiving its expected monetary value with certainty. Surprisingly,

CT always implies weak risk aversion irrespective of the curvature of  and . To illustrate this

consider the choice between $50 for sure and a coin flip between zero and $100. Weak risk aversion

demands that (50)  (0) + 05(100). Since (0) = 0, the right hand side of this inequality can be

reformulated as (0)+05[(100)−(50)]+05[(50)−(0)] so that rearranging yields (50)−(0) 

05[(100) − (50)] + 05[(50) − (0)]. According to condition (3), (50) − (0) is larger than both

utility differences on the right hand side such that the sure $50 is valued higher than the lottery. The

next proposition shows that this result holds in general.

Proposition 1 A preference relation which can be represented by CT always displays weak risk

aversion. ¤

3.2 Strong Risk Aversion

A stronger concept of risk aversion has been proposed by Rothschild and Stiglitz (1970) who de-

fine risk aversion as aversion to mean-preserving spreads. For a lottery  = (1 1;    ;  ) with

strictly positive probabilities 1     , a mean-preserving spread is given by 
0 = (1 1;    ;  +

;    ; 0  0 − 0 ;    ;  ) whenever   0 and   0. Strong risk aversion demands

 Â  0 whenever  0 is a mean-preserving spread of  . In EU weak and strong risk aversion are
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equivalent and both are implied by a concave utility function for wealth. The next result shows, that

strong risk aversion in CT is equivalent to having a strictly concave utility function . This indicates

that risk attitude is independent of attitude towards wealth given by the curvature of .

Proposition 2 A preference relation which can be represented by CT displays strong risk aversion if

and only if  is strictly concave. ¤

Although CT-preferences that satisfy stron risk aversion imply that  is strictly concave and also

that weak risk aversion holds, the indifference sets of lotteries have convex kinks at the line of certainty.

Therefore, they exhibit first-order risk aversion as defined by Segal and Spivak (1990). This means

that a CT investor requires a strictly positive premium in order to invest into a risky asset. If the

CT-investor is strongly risk averse, he will reduce his investment share if the risk in the asset increases

through a zero mean risk on the chance component. This follows from the concavity of . Clearly, the

investor who has invested a share of his wealth into a risky asset will also reduce his share of investment

if a zero mean risk added to the asset affects the worst outcome. In that case the statement follows

from Inequality (3) rather than from the concavity of . Subsection 3.5 will discuss investment and

savings behavior in a dynamic setting. For that it is important to understand attitudes towards wealth,

which are discussed next.

3.3 Attitudes towards Wealth

Although, the curvature of  does not influence whether a subject is chance averse or not, it does

determine how weak risk aversion changes when initial wealth increases. For generality we assume

decision under uncertainty in this subsection. A subject exhibits constant (decreasing, respectively,

increasing) absolute risk aversion if  ∼  implies +  ∼ (≺Â)(1 +       + ) for all constant

acts , non-constant acts  , and   0. Expressed in wealth and chance utility terms this means that

() = () +
X
∈S

( − )⇒ (+ ) = ()( + ) +
X
∈S

( − ) (4)
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where  = min∈S{}, which yields

(+ )− () = ()( + )− () (5)

This immediately implies the following result, since by monotonicity   .

Proposition 3 A Chance Theory preference relation displays constant (decreasing, increasing) ab-

solute risk aversion if and only if  is linear (concave, convex). ¤

Having seen how risk attitude is decomposed into sensitivity to absolute changes in wealth (cap-

tured by ) and sensitivity to chance (captured by ) the next subsection looks at comparative risk

attitudes.

3.4 Comparative Risk Attitudes

An individual  is defined to be more risk averse than another individual  if  always dislikes

mean-preserving spreads to a greater extent than  does. In EU this is equivalent to  having for all

lotteries a lower certainty equivalent than . In CT matters are somewhat more complex as we have

to distinguish whether a mean-preserving spread does change the worst outcome or not. In the latter

case only  does influence the comparative risk aversion between  and  whereas in the former case

both  and  are involved.

As a preparation we formally recall the classical definition of a certainty equivalent of a lottery,

which we supplement with the analog notion of a (conditional) chance equivalent. For a lottery

 = (1 1; · · · ;  ) and a preference relation <, the certainty equivalent, ( ), is defined as the

outcome which, when obtained with certainty, is indifferent to the lottery  , i.e., (1 ( )) ∼  .

Similarly, for  ≤   = 1      we define the conditional certainty equivalent ( ) as the

outcome which, when obtained with probability 1 −  or otherwise obtaining , is indifferent to

the lottery that gives  with probability 1 −  or otherwise  for all  ∈ (0 1), i.e., ( ; 1 −
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( )) ∼ ( ; 1−  ) for any  ∈ (0 1). For CT-preferences the CCE is independent of the

value  ∈ (0 1). This allows us to define comparative risk aversion of < and < as follows:  is

more risk averse than  if we have ( )  ( ) and ( )  ( ) for all lotteries

 .

Proposition 4 Consider two preference relations < and < which can be represented by CT.

Then A is more risk averse than B if and only if 00()
0
()  00()

0
() and 0()() 

0()() for all    0  ∈ R. ¤

Proposition 4 indicates that in order to compare risk attitudes of two decision makers we require a

comparison of the absolute degree of curvature of their chance utilities and, further, a comparison of

the changes in the wealth utility relative to chance utility. Clearly, if both decision makers share the

same utility for wealth, then A is more risk averse than B if and only if 00()
0
()  00()

0
().

This implies that  is a concave transformation of , as required by first inequality in Proposition

4. Conversely, if both decision makers share the same chance utility, then the second inequality in

Proposition 4 reduces to 0()  0(). This means that individual  appreciates changes in wealth

more that individual  does. This, together with Inequality (3) implies that  displays more risk

aversion than does. In general, however, a comparison of risk behavior requires a comparison of

tradeoffs for chance and a comparison of tradeoffs between wealth and chance for both individuals.

3.5 Prudence

According to Kimball (1990) an agent is prudent if adding an insurable zero-mean risk to his future

wealth raises his optimal saving. This precautionary saving can be analyzed in a simple model with

two periods, 0 and 1 and exponential discounted utility. Let 0 be the deterministic wealth in period

0 whereas wealth in period 1 is given by the random variable ̃1. With expected utility theory

preferences, optimal savings  are determined by maximizing
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(0 − ) + ((̃1 + )) (6)

where  is the time discount factor and  = 1+  for the interest rate ,  is the expectation operator

and  is a standard von-Neumann-Morgenstern utility. If 1 denotes the minimum wealth in period

1, the equivalent expression under CT is

(0 − ) + [(1 + ) +((̃1 − 1))] (7)

and the first order condition for optimal savings ∗ becomes

0(0 − ∗) = 0(1 + ∗) (8)

If the riskiness of ̃1 increases without changing 1, optimal savings remain unchanged. Then the

individual can continue with his “habitual” or planned consumption of at least 1 tomorrow. If,

however, increasing risk leads to a decrease of 1, optimal savings increase, if the curvature of  does

not switch from concave to convex or vice versa, i.e.  is either globally concave, globally convex

or linear. Obviously, for small changes in 1 the requirement that the sign of 
00 at 0 − ∗ and at

1 + ∗ is the same will also suffice for locally prudent behavior. Remarkably, whatever the risk

attitudes captured by the utility of chance, they do not have any influence on the level of savings. We

summarize the result as follows:

Proposition 5 An agent with Chance Theory preferences is prudent if the agent exhibits constant,

decreasing or increasing absolute risk aversion. ¤
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3.6 Paradoxes

This section shows that CT is able to resolve several behavioral irregularities which are inconsistent

with EU and have motivated the development of alternative descriptive theories like prospect theory.

The most prominent evidence against EU are the common consequence and common ratio effects of

Allais (1953). An example for the common consequence effect is given by the following two lottery

pairs:

A: 100% chance of $1 million versus B: 10% chance of $5 million

89% chance of $1 million

1% chance of $0

A*: 11% chance of $1 million versus B*: 10% chance of $5 million

89% chance of $0 90% chance of $0

In this example many people choose A in the first choice problem and B* in the second one whereas

EU demands that subjects either choose A and A* or B and B*. The typical preferences in terms of

CT yield (1)  (0) + 089(1) + 01(10) for the first pair and (0) + 011(1)  (0) + 01(5) for

the second one. It is obvious that both inequalities can be satisfied simultaneously. Subtracting the

second inequality from the first one yields (1)−(0)−011(1)  089(1) which implies (1)−(0) 

(1) − (0) since (0) = 0. This latter inequality is always satisfied in CT due to monotonicity, see

Inequality (3). Hence, CT is either consistent with the implications under EU or it implies a violation

in the typical direction. A violation in the opposite direction is excluded by monotonicity under CT.

An example for the common ratio effect is given by the following two lottery pairs:

C: 100% chance of $3000 versus D: 80% chance of $4000

20% chance of $0

C*: 25% chance of $3000 versus D*: 20% chance of $4000

75% chance of $0 80% chance of $0

EU demands that subjects choose either C and C* or D and D* whereas there is evidence that

many people prefer C and D*. For this choice pattern CT yields (3000)  (0) + 08(4000) and
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(0) + 025(3000)  (0) + 02(4000). Rearranging the second inequality to (3000)  08(4000)

and subtracting it from the first one, implies (3000) − (0)  (3000) − (0) which holds due to

monotonicity. Therefore, also for the common ratio effect CT is either consistent with EU or a

violation of EU in the observed direction whereas violations in the opposite direction are excluded.

A further paradox challenging the descriptive validity of EU has been put forward by Rabin (2000).

Rabin argues that many people would reject a coin flip where they either win $11 or loose $10 and

they would do so at all initial wealth levels. Rabin’s calibration theorem shows that this small-stake

risk aversion implies unrealistic high degrees of risk aversion for larger stakes. In CT, rejecting the

coin flip at initial wealth  implies ()  ( − 10) + 05(21). From condition (3) we know

that () − ( − 10)  (10). Therefore, a sufficient condition for resolving the Rabin paradox is

(10)  05(21), e.g., a slight concavity of  at small stakes without any implications for behavior at

higher stakes.

4 Preference Foundation

To simplify the exposition, we use  for an act that agrees with the act  on event  and with the

act  on the complement . Also, we use  instead of {} for any state  ∈ S. Sometimes we

identify constant acts with the corresponding outcome. We may thus write  for an act agreeing

with  on  and giving outcome  for states  ∈ . Similarly, we write  for an act agreeing with

 on  and giving outcome  for states  ∈ .

We consider a preference relation < on the set of acts. As usually,  <  means that act  is

weakly preferred to act . The symbols Â and ∼ denote strict preference and indifference, respectively.

The preference relation < is a weak order if it is complete ( <  or  <  for any acts  ) and

transitive. A functional  : F → R represents the preference relation < if for all   ∈ F we have

 <  ⇔  () ≥  ().

We recall some standard properties for the preference < and the corresponding result for a repre-
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sentation  . The preference relation < on F satisfies monotonicity if  Â  whenever  ≥  for all

states  ∈ S with a strict inequality for at least one state. By employing this condition we ensure that

the subjective probabilities, derived later, are positive. This follows because monotonicity excludes

null states, that is, states where the preference is independent of the magnitude of outcomes. Formally,

a state  is null if  ∼  for all acts  and all outcomes  .

The continuity condition defined here is continuity with respect to the Euclidean topology on R:

< satisfies continuity if for any act  the sets { ∈ F| < } and { ∈ F| 4 } are closed subsets

of R. Following Debreu (1954) we know that the preference relation < is a continuous monotonic

weak order if and only if there exists a representation  : F → R for < that is continuous and strictly

increasing in each argument. Further, this representation is continuously ordinal, that is,  is unique

up to strictly increasing continuous transformations.

The representation of CT is, besides the standard assumptions of weak ordering, continuity, and

monotonicity, obtained by imposing two further conditions. The first ensures independence of risk-

free wealth from possible increments and the second one demands independence between the possible

increments. Although the motivation for proposing CT is mainly descriptive, we see no obvious reasons

to dismiss these conditions from a normative viewpoint. Besides transitivity, monotonicity seems to

be the most important requirement for this viewpoint.

Our goal is to restrict the general representation  by requiring a form of additive separability,

more restrictive than traditional additive separability (Debreu 1960). To this aim we require further

notation. By F := { ∈ F| ≥   = 1     } we denote the set of acts that have the worst

possible outcome in state  ∈ S. To simplify the presentation of the next preference conditions we

write ( : ; ) := (+) for an act which has its minimal outcome  in state  and the outcome

 +  in all other states  6= .

Next we assume a strengthening of the triple cancellation property which has already been used to

obtain additive separability (e.g., Wakker 1989).4 The preference relation < satisfies consistent worst
4Traditionally, triple cancellation has been formulated with weak preferences. Given the structural assumption is our
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outcome segregation (WOS) if for all 0 ∈ S:

( : ; ) ∼ ( : ; ) , ( : ; ) ∼ ( : ; )

and (0 : ;  0) ∼ (0 : ; 0) ⇒ (0 : ;  0) ∼ (0 : ; 0)

WOS entails three important requirements. First, it demands a segregation of the worst outcome

from all other possible outcomes. Special attention is given to the worst outcome and separately to

changes from that worst outcome within an act. Secondly, when  = 0, the condition demands a

condition akin of triple cancellation. The latter has frequently been used in the derivation of additive

separability when the objects of choice are two dimensional. In our case one can interpret the first

dimension as the state  and the second dimension as the residual states. The third requirement of

WOS is a consistency requirement for equivalent worst outcome tradeoffs. The first two indifferences,

( : ; ) ∼ ( : ; ) and ( : ; ) ∼ ( : ; ), indicate that obtaining  instead of  as worst

outcomes is equivalent to obtaining  instead of  as worst outcomes when the preference difference

for the potential improvements in  and  that can be obtained in states other than  are neutralized.

Similarly, the latter two indifferences in WOS indicate that trading off the worst outcome  for  is

equivalent to trading off the worst outcome  for  given the preference difference for the potential

improvements in  0 and 0 that can be obtained states other than0. The consistency requirement says

that such equivalent worst outcome tradeoffs are independent of the states where they are observed.

This consistency requirement is similar in spirit to the tradeoff consistency property recently proposed

by Alon (2013), where consistency of tradeoffs is required for worst outcomes but also, separately, for

best outcomes. The difference here is that we focus exclusively on the worst outcomes and, additionally,

equivalent tradeoffs are measured conditional on improvements from the worst outcomes. Combining

WOS with the rationality principles of weak order and monotonicity, and requiring continuity we

paper and the properties of monotonicity and continuity, it will suffice for our purposes to formulate the next property

using indifferences only. See also Köbberling and Wakker (2003, p. 409) who argue for tradeoff consistency, a different

extension of triple cancellation, formulated with indifferences instead of preferences because of additional transparency

due to symmetry of the indifference relation.
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obtain the following result.

Lemma 6 Assume that the preference relation < on F is a continuous monotonic weak order that

satisfies consistent worst outcome segregation. Then, there exists continuous strongly monotonic func-

tions  : R → R − : R−
+ × {0}× → R−1

+ with −(0     0) = 0  = 1     , such that on each

set F the preference < is represented by

 () = () + −( − )

Further, for   0 and real-valued  the function  can be replaced by +  whenever − is replaced

by −,  ∈ {1     }. ¤

Next we are concerned with preference conditions that allow for additive separability of the function

−  = 1     . In fact our conditions are stronger because they require proportionality of the

resulting additively decomposed functions, which, in turn, allows for the identification of subjective

probabilities for states.

We require that the preference relation < satisfies tradeoff consistency for chance:

if ( + ) ∼ ( + ) and ( + ) ∼ ( + )

then ( 0 + )0
0 ∼ ( 0 + )0

0 implies ( 0 + )0
0 ∼ ( 0 + )0

0

whenever all acts are from the same set F = 1      and  0 6= .

Note that the principle of tradeoff consistency for chance is meaningless if there are exactly two

states of nature.

Theorem 7 The following two statements are equivalent for a preference relation < on F .

(i) The preference relation < is represented by CT, with (positive) subjective probabilities   =

1      and strictly increasing continuous functions  : R→ R and  : R+ → R+, with (0) = 0
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such that for all  ∈ R     0 Eq. (2) holds.

(ii) The preference relation satisfies weak order, monotonicity, continuity, worst outcome separability

and tradeoff consistency for chance.

Further, the subjective probabilities are uniquely determined and   can be replaced by ̃ = + 

and ̃ =  whenever   0 and  ∈ R. ¤

5 Discussion

The separation of overall utility into a risk free utility for wealth and a risky utility for chance in CT

implies very specific risk behavior. Sure improvements in the wealth of an agent are more valuable

than a risky distribution of improvements which are of equal expectation. As this classical notion of

weak risk aversion is satisfied by all CT-agents, the latter will only invest in risky assets if the expected

return on such assets exceeds a certain positive amount. Therefore CT-preferences can explain the

equity premium puzzle and certainty effects. While it is customary in economic application to assume

that agents are risk averse, such behavior is restrictive as there are situations in which risk seeking

is observed. Since at least Friedman and Savage (1948) it has been clear that simultaneous gambling

and purchase of insurance calls for an explanation. In the simplest form presented here, CT cannot

explain this phenomenon. One might be tempted to invoke as extension of CT a non-additive measure

for events instead of a probability measure. For decision under risk this means that decision weights

as in rank-dependent utility (Quiggin, 1981; 1982) or Choquet expected utility (Schmeidler, 1989)

and modern prospect theory (Tversky and Kahneman, 1992) are obtained. In those theories, decision

weights do indeed offer an explanation for the simultaneous purchase of lottery tickets and insurance

(Wakker 2010, p.207). For CT, while possible, such extensions will not be able to serve as explanation

for this phenomenon as they will also call for an analogous condition to Inequality (2) with decision

weights replacing probabilities. The new condition will require that the decision weights cannot be too
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large in addition to the utility for chance having to be everywhere flatter than the riskless utility at all

wealth levels. Thus, probability weighting functions cannot be too steep either, which prevents risk

seeking behavior. We conjecture that, in general, an account for a preference or utility for gambling

is prevented due to our joint requirement of monotonicity and the particular separation of outcomes

in an act into a riskless and a chance component. As discussed in Diecidue, et al. (2004) theories

accounting for the utility of gambling typically violate monotonicity or transitivity. These are basic

rationality principles that we like to preserve here. However, the replacement of subjective probabilities

by decision weights will enable CT to accommodate the paradoxes of Ellsberg (1961) and therefore

enrich CT with the possibility to study ambiguity attitudes, which has been a very popular research

theme in recent decades.

To explain the simultaneous purchase of insurance and lottery tickets or, more generally, to allow

for risk seeking behavior, a different approach is required. It is the special role of the worst outcome

that needs to be changed. A simple extension would constitute of some weighted average between the

CT-value of an act and the dual analog of CT, where the maximum of an act is given the special role,

e.g., resulting in a Hurwicz-like criterion for the evaluation function (see Arrow and Hurwicz, 1972).

Alternatively, one can envisage that any outcome of an act ranging between the worst and the best

outcome is designated as special. This is different to the assumption of a target or reference point

that is fixed in advance (Fishburn, 1977; Kahneman and Tversky, 1979) as these are independent of

the acts that are considered. Such an approach has been provided in Gul’s (1991) disappointment

aversion model, where the certainty equivalent, CE, of a lottery is designated as a special outcome.

There a lottery is viewed as an -probability mixture of two lotteries, the first having prizes below

the CE and the second having prizes above the CE. The overall value of a lottery is then given by a

weighted average of the expected utility of these two lotteries where the weights are a function of  and

a parameter  that measures the degree of disappointment. As in expected utility, Gul’s model does

not specify if outcomes are final wealth positions or changes in wealth. We think that a generalization
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of CT, with the CE of an act designated as having a prominent role or value in the evaluation of acts,

may give a useful extension. Such an extension would feature three utility functions: one for wealth,

that is assigning real values to the CE of an act; a chance utility for improvements, assigning positive

value to changes in outcomes above the CE; and its counterpart, a chance utility for decrements,

assigning negative value to the latter. Such a model can also provide an extension to prospect theory

(Kahneman and Tversky, 1979), with the chance utility interpreted as prospect theory’s value function

and the utility for wealth interpreted as valuing the lottery-dependent reference point; its derivation,

however, lies beyond the scope of this paper.

6 Conclusion

In order to achieve a separation of attitudes towards wealth and attitudes towards risk we have

proposed the interpretation of acts as a composition of the worst possible outcome plus likely im-

provements, each valued by separate utility functions. Chance theory is a descriptive theory that

deviates significantly from the expected utility model. It agrees with the latter only for risk neutral

preferences. Remarkably, CT does not need higher order moments to explain prudence and risk aver-

sion, and suggests that these behaviors may be unrelated. Our model can be a reasonable approach

for the analysis of the most plausible type of behavior. If people are not put in situations that they

dislike and which, whenever possible, they avoid, or if they admit that the dream of winning a fortune

in the lottery will remain a life-long dream for the majority of them, then most likely people are risk

averters. They will value sure things more than risky ones and reveal risk averse behavior, as does

the classical economic agent. For such agents we have developed Chance Theory.

Appendix: Proofs

Proof of Proposition 1: We have to show that for all lotteries  = (1 1;    ;  ) obtaining

the expected value of the lottery,  ( ), for sure is weakly preferred to the lottery  . That is,
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(1  ( )) <  for all lotteries  .

Let  be the smallest outcome of some arbitrary lottery  . Substitution of CT into the previous

preference gives

( ( )) ≥ () +

X
=1

( − )

which is equivalent to

( ( ))− () ≥
X

=1

( − ) (9)

Observe that for any  ∈ N the following identity holds

( ( ))− () =

X
=1

{( ( )−  − 1

[ ( )− ])− ( ( )− 


[ ( )− ])}

By setting

∆+ := min
∈{1}

{( ( )−
−1

[ ( )− ])− ( ( )− 


[ ( )− ])

1

[ ( )− ]

}

we obtain the following inequality

( ( ))− () ≥
X

=1

∆+

[ ( )− ]

= ∆+ [ ( )− ]

Let  ∈ [  ( )] be an outcome where the slope of  is smallest. Such an outcome exists as

we assumed that  is continuously differentiable over R. Then, there exists   0 such that ∆+ ≥

[( + ) − ()] for all 0    . Note that the latter inequality is strict, unless  is linear on

[  ( )]. It then follows that

( ( ))− () ≥ ( + )− ()


[ ( )− ] (10)
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for all 0     with a strict inequality unless  is linear on [  ( )].

Next, observe that for any  ∈ N,  = 1     , the following identity holds

X
=1

( − ) =

X
=1



X
=1

{( −  − 1


( − ))− ( − 


( − ))}

By setting for each  = 1     

∆− := max
∈{1}

{
( − −1


( − ))− ( − 


( − ))

1

[ − ]

}

we obtain the inequality

X
=1

( − ) ≤
X

=1

∆
−

( − )

Further, by setting

∆− := max
∈{1}

{∆−}

we obtain

X
=1

( − ) ≤ ∆−

X
=1

( − )

= ∆− [ ( )− ]

Let  ∈ [0max∈{1}{ − }] be an outcome where the slope of  is largest.5 Such an outcome

exists as  is continuously differentiable. Then, there exists 0  0 such that ∆− ≤ [()−(−)]

for all 0    0, with a strict inequality unless  is linear on [0max∈{1}{−}]. It then follows

that

X
=1

( − ) ≤ ()− (− )


[ ( )− ] (11)

for all 0    0 with a strict inequality unless  is linear on [0max∈{1}{ − }].
5 If  = 0 take ∗  0 sufficiently close to 0.
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Let ∗ = min{ 0}. Then, the Inequalities (10) and (11) above hold for all 0    ∗. Recall

that Inequality (3) in the main text also holds, i.e.,

(0 + 0)− (0) ≥ (0)− (0 − 0)

for all 0 ∈ R 0  0  0, and thus, it holds in particular for 0 =  0 =  and 0 =  for all

0    ∗. Therefore,

( + )− ()


[ ( )− ] ≥ ()− (− )


[ ( )− ]

holds for all 0    ∗. Invoking Inequality (10) for the term on the left and Inequality (11) for the

term on the right implies Inequality (9) as desired. Further, Inequality (9) is strict unless  is linear

on [0max∈{1}{ − }] or  is linear on [  ( )].

As  was an arbitrary non-degenerate lottery, it follows that CT implies weak risk aversion for

decision under risk. This completes the proof of Proposition 1. ¤

Proof of Proposition 2: We have to show that strong concavity of  under CT is equivalent

to  = (1 1;    ;  ) Â  0 = (1 1;    ;   + ;    ; 0  0 − 0 ;    ;  ) whenever

  0 and   0.

Step (i): Suppose that 0 − 0 is not the minimal outcome of 
0, i.e.  and  0 have the same

minimal outcome. In this case CT reduces to an expected utility representation. As a result, it follows

that  is concave. Conversely, strict concavity of  is sufficient for  Â  0 if 0 − 0 is not the

minimal outcome of  0.

Step (ii): Suppose now that 0 is the minimal outcome of  such that 0 − 0 is the minimal
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outcome of  0. We have to show that  Â  0 or, equivalently, after substitution of CT that

(0) +

X
=1

( − 0)  (0 − 0) +

X
=1

6=0

( − 0 + 0) + (12)

( +  − 0 + 0) + 0(0)

As  is strictly concave it holds that

( +  − 0 + 0) + 0(0)  ( − 0 + ) + 0(0)

Therefore it remains to show that

(0) +

X
=1

( − 0)  (0 − 0) +

X
=1

( − 0 + 0) (13)

Rearranging yields

(0)− (0 − 0) 

X
=1

[( − 0 + 0)− ( − 0)]

⇔
X

=1

[(0)− (0 − 0)] 

X
=1

[( − 0 + 0)− ( − 0)] (14)

From condition (3) we know that the utility of wealth difference on the left side of the exceeds each

chance utility difference on the right hand side of the inequality. Therefore,  Â  0 follows whenever

0 is the minimal outcome of  .

Step (iii): It remains to consider the case that 0 is not the minimal outcome of  but 0 − 0

is the minimal outcome of  0. Suppose that  is the minimal outcome of  . We have 0   ≥

0 − 0 . If  = 0 − 0 , then  Â  0 follows from strict concavity of  using arguments

similar to those in Step (i). Alternatively, if 0    0 − 0 , then we can the mean-preserving
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spread from  to  0 can be obtained from two successive mean-preserving spreads follows. Define 0

such that  = 0 + 00 and set  00 = (1 1;    ;   + ;    ; 0  0 − 0 ;    ;  ). By

construction  00 is a mean-preserving spread of  and both lotteries have the same minimal outcome.

Thus,  Â  00 follows as  is concave. Further,  0 is a mean-preserving spread of  00 with minimal

outcome 0 + 00 and 0 + 00 − 0 . By Step (ii) it then follows that 
00 Â  0. Thus,

 Â  00,  00 Â  0 and transitivity yields implies  Â  0. Thus, Steps (i)—(iii), complete the proof of

Proposition 2. ¤

Proof of Proposition 3: The proof follows immediately from the arguments provided preceding

the proposition in the main text. ¤

Proof of Proposition ??: Let  = (1 1;    ;  ) be a non-degenerate lottery with worst

outcome . Expressing the definition of ( ), or  for short, ( = ), in terms of

CT yields: () + (1 − )( − ) = () + (1 − )
P

=1 ( − ) which implies

( − ) =
P

=1 ( − ) As the  is purely defined by the EU-component of

CT based o , we know from Pratt (1964) that we always have  −    − , i.e.,

   if and only if 
00
()

0
()  00()

0
() for all   0 ∈ R.

Expressing the definition of ( ), or  for short, ( = ), in terms of CT yields:

() = () +
P

 ( − ). This implies

()− ()P
=1 ( − )

= 1 =
()− ()P

=1 ( − )
 (15)

which can be expressed as

R 


0()
( − )

=

R 


0()
( − )

 (16)

First we assume that 00()
0
()  00()

0
() and 0()()  0()() for all   

0 ∈ R holds. We prove that   . From 00()
0
()  00()

0
() for all   0 ∈ R it
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follows (see above) that   . Consider  defined by

R 


0()
( − )

= 1 =

R 


0()
( − )

 (17)

Since 0()( − )  0()( − ) for all  ∈ R, we must have   .

As

R 


0()
( − )

= 1 =

R 


0()
( − )

(18)

and ( − )  ( − ) we must have     . Thus,   

follows as desired.

Next, we assume that ( )  ( ) for all nondegenerate lotteries  and prove that

0()()  0()() for all   0  ∈ R (as 00()0()  00()
0
() has already been

shown). For an arbitrary probability 0    1 and arbitrary outcomes   0  ∈ R, consider the

lottery  = (  +  1−  ). Obviously we have (( )) = () + () which yields

(( ))− ()

()
= 1 (19)

Analogously we get

(( ))− ()

()
= 1 (20)

This implies

R 


0()

()
= 1 =

R 


0()

()
 (21)

Suppose now that  converges to zero. This implies that  and  converge to . This

follows from the fact that CT is continuous in probabilities. Now    can only hold if

0()()  0()(). As this argument is valid arbitrary   0  ∈ R, it is also valid for all
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  0  ∈ R.

This completes the proof of Proposition 4. ¤

Proof of Proposition 5: The proof follows immediately from the arguments provided preceding

the proposition in the main text. ¤

Proof of Lemma 6: First we note that by Debreu (1954) the preference conditions imply the

existence of a strongly monotonic continuous function  : R → R that represents the preference <

on F . Obviously,  also represents < on each set F = 1     .

Let us fix an arbitrary state  ∈ S. Without loss of generality let  = 1. Continuity and

monotonicity imply that for each act  ∈ F1 there exists a unique outcome  such that  ∼

(1 
       ). Next we restrict the analysis to the set of quasi binary acts { ∈ F1|(1        )}.

In our notation for acts (i.e.,  = (1 : 1;  − 1)) this set is isomorphic to the two dimensional set

1 := { ∈ F1|(1 : 1; − 1)} (∼= R × R+). The restriction of the preference < to 1, which for

simplicity we also denote <, inherits weak order, continuity and monotonicity from < on F1. Ad-

ditionally, it satisfies the triple cancellation condition formulated with indifferences on 1. In the

presence of weak order, monotonicity and continuity, and the structural richness that we have in 1,

the indifference version of triple cancellation is equivalent to the preference version of the triple can-

cellation (see Köbberling and Wakker, 2003, for a similar argument showing that their indifference

version of tradeoff consistency is equivalent to the preference version of tradeoff consistency). Hence,

by Corollary 3.6 and Remark 3.7 of Wakker (1993a) it follows that there exists (jointly cardinal)

continuous and strictly increasing functions 1 : R → R and −1 : R+ → R such that < on 1 is

represented by

1() = 1(1) + −1( − 1)

Note that continuity and monotonicity imply that −1(0) = 0. This means that, for   0 and

 real, 1 can be replaced by 1 +  whenever −1 is replaced by −1. Next we extend −1
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from R+ to {0} × R−1
+ . Using the indifference  ∼ (1 : 1; 0 

 − 1     
 − 1) we can define

−1 : {0} ×R−1
+ → R through

−1(0  − 1) := −1(0  − 1     
 − 1) ≡ −1(0  − 1).

This way continuity and strong monotonicity of −1 is inherited through  . Then, for   ∈ F1, we

have

 <  ⇔ (1 
 − 1) < (1  − 1)

⇔ 1(1) + −1( − 1) ≥ 1(1) + −1( − 1)

⇔ 1(1) + −1( − 1) ≥ 1(1) + −1( − 1)

demonstrating that 1() = 1(1) + −1( − 1) represents < on F1. Obviously, the uniqueness

results for 1 and −1 are maintained through this extension of the representation.

In the preceding analysis we have fixed state  = 1. The proof for any arbitrary state  ∈ S

is completely analogous. Hence, we can conclude that for each state  ∈ S there exists strongly

monotonic and continuous functions  : R → R − : {0} × R−1
+ → R such that on each set F

the preference < is represented by

() = () + −( − )

The functions  − satisfy the corresponding uniqueness results for the representation on F

for all  ∈ S.

Next we apply once more WOS. We take two arbitrary but distinct states 0 ∈ S. Locally, in a

small neighborhood, we can find for all  ,   and  , such that the following three indifferences

hold: ( : ; ) ∼ ( : ; ), ( : ; ) ∼ ( : ; ) and (0 : ;  0) ∼ (0 : ; 0) and all acts are from
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F ∩F0 . By WOS it follows that (0 : ;  0) ∼ (0 : ; 0) with these acts being from F ∩F0 . As

both and0 represent preferences on F∩F0 these functions must be ordinal transformations

of each other. Further, substitution of in the former two indifferences and taking differences of the

resulting equations and cancelling common terms, implies ()−() = ()−(). Similarly,

substitution of 0 in the latter two indifferences, implies 0() − 0() = 0() − 0(). As,

  and   were arbitrary, it follows that  and 0 are (first locally and by continuity also

globally) proportional. As  =  and 0 = 0 for all constant acts, and the latter are included

in F ∩ F0 , it follows that  and 0 are, actually, cardinally related. Hence, we can choose

them identical on the set of common acts F ∩ F0 . In particular this means that − = −0 on

(R−
+ ×{0}×→ R−1

+ )∩ (R−0
+ ×{0}×→ R0−1

+ ). As  and 0 were arbitrary chosen, we can set

 :=  for all  ∈ S. That is

() = () + −( − )

holds on each set F. Further, uniqueness results are maintained for  and −  ∈ S. This completes

the proof of Lemma 6. ¤

Proof of Theorem 7: First we prove that statement (ii) implies statement (i). Monotonicity of

< follows from the strong monotonicity of  . Continuity of < follows from the continuity of  . The

fact that  is representing < on F implies that < is a weak order. Notice that on each set F the

act  is evaluated by  () = () + ( − ) where ( − ) =
P

∈S\{} ( − ), which is

an additively separable representation of < on F and has  independent of . Hence, substitution of

 for the indifferences in the definition of WOS immediately shows that < satisfies WOS. To derive

tradeoff consistency for chance assume that the acts in the following indifferences are all from the
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same set F for some state  ∈ S, and that

( +) ∼ ( + )

( + ) ∼ ( + )

and ( 0 + )0
0 ∼ ( 0 + )0

0 hold

but ( 0 + )0
0 Â ( 0 + )0

0

for some  0 6= . Substitution of  into the first two indifferences implies that

() +
X

∈S\{}
( − ) + () = () +

X
∈S\{}

( − ) + ()

and

() +
X

∈S\{}
( − ) + () = () +

X
∈S\{}

( − ) + ()

hold. Subtracting the second equation from the first and cancelling common terms gives:

[()− ()] = [()− ()]

or

()− () = ()− ()

as the probability  is positive.

Substitution of  into the third indifference and the latter preference gives, by using similar

calculus,

()− ()  ()− ()

a contradiction.

If in the previous analysis, instead of ( 0 + )0
0 Â ( 0 + )0

0, we assume ( 0 + )0
0 ≺
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( 0 + )0
0, a similar contradiction (i.e., ()− () = ()− () and ()− ()  ()− ())

is obtained. Hence, ( 0 + )0
0 ∼ ( 0 + )0

0 must hold. As  ∈ S was arbitrary, it follows that

tradeoff consistency for chance holds on each set F. Hence, it holds on F .

Finally, the property that for all  ∈ R     0

( + )− ()  ()− (− )

holds follows from the strong monotonicity property of  and Lemma 6.

Next we assume statement (ii) and derive statement (i). The assumptions of Lemma 6 are satisfied,

hence, there exists continuous strongly monotonic functions  : R → R − : R−
+ × {0}× → R−1

+

with −(0     0) = 0  ∈ S, such that the preference < is represented by

 () = () + −( − )

for  ∈ F. Further, for   0 and real-valued  the function  can be replaced by  +  whenever

− is replaced by −,  ∈ {1     }.

Take any arbitrary state  ∈ S. Tradeoff consistency for chance implies that if

( + ) ∼ ( + )

( + ) ∼ ( + )

and ( 0 + )0
0 ∼ ( 0 + )0

0 hold,

then ( 0 + )0
0 ∼ ( 0 + )0

0 follows, provided that  0 6=  and all acts involved are from the set
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F. Substituting  =  + − we obtain that on R−
+ × {0}×→ R−1

+ the equalities

−(( + ) − ) = −(( + ) − )

−(( + ) − ) = −(( + ) − )

and −(( 0 + )0
0 −  0) = −(( 0 + )0

0 −  0)

imply −(( 0 + )0
0 −  0) = −(( 0 + )0

0 −  0)

This condition is analogous to tradeoff consistency (see Köbberling and Wakker 2003) for the func-

tion − (representing a continuous monotonic preference) on R−
+ × {0}× → R−1

+ . Following

Köbberling and Wakker (2003) this implies that there exist positive numbers −  ∈ S\{} and a

continuous strictly increasing utility function − : R+ → R such that

−( − ) =
X

∈S\{}
−−( − ).

From −(0) = 0 it follows that −(0) = 0. This means that < on F is represented by

 () = () +
X

∈S\{}
−−( − )

We now set (0) = 0 to fix the location of .

Recall that  ∈ S was arbitrary chosen. Hence, we conclude that for each state  ∈ S there exist

strictly increasing and continuous function − : R+ → R with −(0) = 0, and positive numbers

−  ∈ S\{} such that () := ()+
P

∈S\{} −−(−) represents the preference on the

set of acts F. Further the functions  and − are unique up to multiplication by a positive constant

(i.e., they are ratio scales).

Take any two distinct states  0 ∈ S and consider the restriction of < on the set of acts F{0} :=

F ∩ F0 . On this set both  and 0 represent <. Uniqueness results imply that −0 = − (as
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both have  in common) and that − = −0 =:  for all  ∈ S\{ 0}. As 0 ∈ S was chosen

arbitrary it follows that the positive numbers − are independent of  ∈ S, such that we have 

positive numbers   ∈ S.

We define ̃ := −. Further, we set  =
P

∈S  and define

 :=


for each  ∈ S

and obtain a subjective probability distribution over the states in S. Finally, we define  := ̃.

Hence, we have shown that the representations  of < on F is of the form

 () = () +
X

∈S\{}
( − ) for  ∈ F  ∈ S

Hence, we have derived statement (i) of the theorem.

By construction the probabilities   ∈ S are uniquely determined. By construction, for positive

 and some constant , we can replace  and  by +  and , respectively. That there is no further

flexibility in the choice of these functions follows from Lemma 6. This concludes the proof of Theorem

7. ¤
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