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1. Introduction 
 
A central question in climate change economics is how humans adapt to their climate. 
Adaptive adjustments limit the negative effects of individual weather events, whose 
occurrence are stochastic and described by a probability distribution that we call the 
climate.  Changes in the climate may enhance the probability of costly weather 
events, but losses to those events could be partly offset by populations’ compensatory 
efforts to protect themselves.  These adaptive adjustments might be, for example, ex 
ante investments in defensive measures or ex post changes in behavior, depending on 
the cost of technology and the availability of information.  Because there are 
numerous possible adaptive adjustments that populations might employ, it is difficult 
to speculate what the cumulative efficacy of these adjustments will be.  Yet, 
collectively, these adjustments may dramatically influence the social impact of 
weather events and thereby influence the cost of climatic changes.  To date, we have 
almost no empirical estimates for the total feasibility, cost or adoption of modern 
adaptive adjustments to climate, a fact that severely limits our ability to estimate the 
social cost of future climate changes (Tol, 2009, Patt et al. 2009, de Bruin et al, 2009). 
 
Using a global cross-section, we estimate the extent of adaptation to a specific 
climatological risk: tropical cyclones. Tropical cyclones (TCs) are the family of 
phenomena that are known as hurricanes and tropical storms in the Atlantic Ocean, 
typhoons in the Pacific Ocean, or simply cyclones in the Indian Ocean; and they are a 
feature of the global climate that is expected to respond to future warming.  Recent 
research suggests that the probability distribution of TC events, i.e. the TC climate, 
will shift toward higher intensities1 in a warming world (Knutson et al., 2010). 
 
Here we produce the first empirical estimates of how much populations around the 
world actually adapt to changes in their TC climate.  We first merge data on 
population’s physical exposure to actual TC events with the losses they suffer as a 
result.  We then compare the extent of adaptation across populations by comparing 
how different societies fare when they are exposed to physically identical events.  If 
we observe that one population suffers smaller losses relative to another population, 
then we infer that the former has protected themselves better, i.e. they are more 
adapted to TCs. 
 
Our ability to characterize patterns of adaptation rests entirely on our ability to 
compare physical exposure to TCs across countries.  Thus, the key innovation for our 

                                                        
1 Knutson et al. (2010), a recent review of this topic, conclude 
 

[F]uture projections based on theory and high-resolution dynamical models consistently 
indicate that greenhouse warming will cause the globally averaged intensity of tropical 
cyclones to shift towards stronger storms, with intensity increases of 2–11% by 2100. Existing 
modeling studies also consistently project decreases in the globally averaged frequency of 
tropical cyclones, by 6–34%. Balanced against this, higher resolution modelling studies 
typically project substantial increases in the frequency of the most intense cyclones, and 
increases of the order of 20% in the precipitation rate within 100 km of the storm centre. (p. 
157) 
 

Thus the entire distribution of TC events is expected to shift on average, with fewer low intensity 
storms but more frequent high intensity storms.  However, there remains extensive uncertainty and the 
relationship between TCs and warming is an area of active research. 
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econometric identification of adaptation is our physical model of TCs.  This physical 
model, first developed and presented in Hsiang (2010), allows us to summarize a 
socially relevant measure of TC exposure using scale-free, i.e. intensive, statistics.  
Our construction of intensive measures of TC exposure is the core reason why we can 
objectively compare TC exposure across countries of different sizes, populations and 
geographies is meaningful way.  Having verified the econometric utility of these 
measures (Hsiang, 2010) we exploit them fully by reconstructing all 6,712 storms 
observed on the planet during 1950-2008 and characterizing the TC exposure of 233 
countries. 
 
Consistent with economic theory, we infer that countries exposed to relatively greater 
TC risk are more adapted to TC exposure because they display differentially smaller 
losses when exposed to an actual TC event.  For example, in the case of economic 
damages we find that exposure to TC winds that are an additional 1 m/s faster 
increases damages by 20.3%; however, a 1 m/s increase in climatological (average) 
TC exposure decreases these marginal damages to 19.6%.  While this “adaptation 
effect” seems small for this marginal change, it becomes large for countries with 
intense TC climatologies2.  Overall, we find strong evidence that it is both feasible 
and cost-effective for countries with intense climatologies to invest heavily in 
adaptation.  However, consistent with predictions of the Envelope Theorem 
(Nordhaus, 2010), we find that marginal changes from countries’ current TC climates 
induce only very small changes in adaptive investments.  This suggests that when 
forecasting the costs of future changes to TC climates, the “dumb farmer” assumption 
that populations will not adapt in response to these changes is a reasonable first 
approximation. 
 
Prior Art 
 
Empirical measurements of adaptation to climate are sparse compared to the breadth 
of the problem.  For example, a small number of historical analyses document ex post 
responses to new climate conditions (e.g. Olmstead and Rhode, 2011, Hornbeck, 
forthcoming). However, these efforts focus on understanding specific responses to 
particular events, in these cases the westward expansion of North American wheat 
and the Dust Bowl, that are difficult to map onto modern global conditions.  More 
generally, empirical research has remained conceptually focused on understanding the 
mechanisms through which populations adapt to climate conditions, for a variety of 
examples see chapters in Libecap and Steckel (2011).  Unfortunately, this approach 
requires that analyses be so specific that their results are difficult or impossible to 
generalize globally.  This absence of a more general picture of adaptation has hobbled 
integrated assessments of global change (Tol, 2009), forcing modelers to make 
sweeping assumptions about the feasibility, cost and adoption of adaptive adjustments 
(Patt et al. 2009; de Bruin et al, 2009).  This study adopts a fully global perspective in 
an effort to inform planetary-scale evaluations, but in doing so we admittedly sacrifice 
our ability to observe which specific strategies adapting populations employ.  
Nonetheless, our reduced-form findings conform to basic microeconomic theory, a 
fact that, in our view, bolsters their credibility. 
 

                                                        
2 Taiwan has the most intense TC climate with average annual wind exposure of 27.7 m/s. 
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In this study, we empirically estimate how the expectation of future TC events 
influences populations’ investment in protection. To do this, we extend and fuse 
approaches developed by previous studies of TCs and natural disasters generally. In 
particular, our study could be viewed as the child of Khan (2005) and Nordhaus 
(2010). 
 
Khan (2005) uses a global cross-sectional model to understand determinants of 
natural disaster3 death tolls. Khan concludes that societies respond differently to 
natural disasters, with income, democracy and institutions being important 
determinants of losses – in other words, his study hints that the adaptive capacity of 
societies may differ according to their socioeconomic conditions. This basic notion, 
and his global cross-sectional model, is the starting point for our study.  
Unfortunately, his study suffered from its simple treatment of disasters.  In particular, 
for lack of an alternative, he assumed that the reported incidence of disasters is 
exogenous to all other determinants of disaster losses. This “exogeneity assumption” 
remains prevalent in economic studies of natural disasters despite demonstrations that 
it is false (Gall et al., 2009, World Bank and the United Nations, 2010) and the 
recognition that physical models of natural hazards could make it obsolete4 (Noy, 
2009). 
 
In contrast to Khan’s cross-country approach that omitted variables for disaster 
physics, Nordhaus (2010) restricted his analysis to the United States and explicitly 
focused on how TC properties at landfall influenced their economic damage5. 
Nordhaus found strong evidence that storm physics were important for damages, but 
because he was only examining TCs that struck the United States his sample 
contained limited variation in TC climatology, making it difficult to discern whether 
different populations adapted to their different TC climates. 
 
Our study uses the strengths of these two studies to overcome their respective 
weaknesses.  Following Nordhaus, we use a physical model of TCs to parameterize 
both TC exposure and TC risk.  Following Khan, we extend this model globally to 
233 countries, providing us with strong variations in TC climatologies.  In the spirit of 
Khan, we then use our estimates of TC risk to understand global cross-sectional 
patterns of adaptation. However, having learned from Nordhaus, we avoid Khan’s 
“exogeneity assumption” by using a physical model to identify country-specific TC-
loss functions. 
 
Finally, it is worth noting that the direct economic impacts of TCs have themselves 
attracted interest in climate change economics.  Climate models suggest that the 
distribution of TCs may intensify in a globally warmed world (IPCC, 2007, Knutson 
et al., 2010) leading some to speculate that losses to enhanced TCs will constitute an 
                                                        
3 Khan examines a large number of disaster types, which includes TCs as a subcategory. 
 
4 In 2009, Noy noted, “[T]he exogeneity issue can potentially be fully overcome by producing an index 
of disaster intensity that depends only on the physical characteristics of the disaster… The collection of 
such data from primary sources and the construction of a comprehensive index for the all the different 
disaster types are beyond the scope of this paper but may be worth pursing in future research." 
 
5 Nordhaus’ original work was presented in a 2006 working paper.  Similar studies that followed 
include Mendelsohn et al. (2010) and Hsiang (2010). 
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important economic cost of climate change (Stern, 2007, ISDR, 2009, World Bank 
and the United Nations, 2010). Integrated economic assessments of enhanced TC 
damage under climate change have since examined these claims more closely (Cline, 
1992; Fankhauser, 1995; Pielke, 2007; Narita et al., 2009; Mendelsohn et al., 2010; 
Nordhaus, 2010) however none have been able to draw on empirical and global 
estimates of TC loss-functions.  Thus, while our focus is to understand global patterns 
of adaptation, an ancillary benefit of this work is to estimate the first globally general 
loss-function for direct TC exposure. 
 
The paper is organized as follows. In Section 2, we develop a simple theory of 
optimal adaptation to TC risk and an approach for estimating it empirically when 
actual adaptive investments are not observed. Section 3 describes the data, estimates a 
general model of TC losses and tests whether populations have adapted to their 
climates. Section 4 discusses our results, with a focus on adaptation to future climate 
changes.  
 
 
 
2. Theoretical Framework 
 
The aim of this study is to examine the role of TC risk on the size of TC losses when 
agents can invest in the protection of their lives and assets. To motivate and clarify 
our empirical analysis, we first examine how the risks posed by a TC climate should 
influence costly adaptive investments in theory. Our model, which is a TC-specific 
refinement of Mendelsohn (2000), predicts this key feature of the data: when exposed 
to physically similar events, populations with high TC risk and/or high capital 
densities should suffer relatively low loses because they have a greater incentive to 
invest in protection.  
 
Setup 
 
The economy is closed and consists of one agent who makes an investment decision 
in adaptation in the first period to mitigate losses from a possible TC in the second 
period.6 The cost of investment is I(e), where 

 

e ∈[0,1) is the level of protection 
achieved via adaptive effort. I(.)≥0, I′(.)≥0, I″(.) > 0, and I(0)=I’(0)=0. 
 
The economy’s capital endowment is K0, the density of capital spread over a single 
unit of land.  Adaptation mitigates the expected reduction in the second period capital 
density K:  
 
(1) 

 

E[K] = K0[1− P(1− e)] 
 
Here, P is the probability that a unit of capital is destroyed in a TC event in the second 
period. P can be decomposed into p, the probability that a TC strikes, and d, the 
probability of capital destruction conditional on a strike occurring. Let p=p(x) and 

                                                        
6 Although the general features of the model are applicable in broader cases, for simplicity of 
discussion we here assume that adaptation measures are just discovered or developed at the beginning 
of the first period, and that any adaptation measures have not been taken prior to the first period.  
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d=d(x) for a TC event of intensity x.7  Note that p(x) is a probability density function 
over TC intensities while no restrictions are placed on d(x).  Since TCs of various 
intensities hit with different probabilities of arrival and the probability of capital 
destruction depends on the intensity of the TC, P is the summary statistic  
 

(2) 

 

P = p(x)d(x)dx
0

∞

∫ . 
 
In a particularly useful and realistic case, if cyclones of intensity x arrive according to 
the negative exponential probability distribution function 
 
(3)  

 

p(x) = λexp[−λx] 
 
then xmean=1/λ.  Furthermore, if their destruction is described by a positive exponential 
function 
 
(4)  

 

d(x) = d0 exp[φx]  
 
such that 

 

0 < φ 2 << λ2 (which holds approximately in our empirical estimates8) then 

 

P = d0λ / λ − φ( )≈ d0 1+ φ /λ( ). In this case, P is almost a linear function of xmean, 
making xmean a good approximation for P in the linear model that follows. 
 
 
Efficient adaptation 
 
Let the output for the economy F be a function of capital density K. With a discount 
factor 

 

β ∈[0,1], the efficient level of adaptation e* is 
 
(5) 

 

e* = argmaxβ⋅ Ex F(K0[1− d(x)(1− e)])[ ]− I(e) 
 
For simplicity, we linearize F near the equilibrium values of K. This allows us to 
rewrite equation (5) as 
 
(5’) 

 

e* = argmaxβ⋅ F(K0[1− P(1− e)]) − I(e) 
 
in which 1-P(1-e) behaves like an expected rate of depreciation for capital9. Equation 
(5’) has the simple first-order condition 

                                                        
7 Note that P is in fact also dependent on the density of capital, i.e., the amount of capital per unit of 
land, which is related to the amount of exposure to a TC. In this model, however, an explicit treatment 
of capital density is not necessary as the amount of land is fixed.  
 
8 For example, 

 

λ ≈ 0.3 and

 

φ ≈ 0.1 when measuring x in wind speed and using a global sample. 
 
9 It is worth noting that in their seminal paper on growth theory, Mankiew et al. (1992) stated “We 
assume that… [the rate of depreciation is] constant across countries….[T]here is neither any strong 
reason to expect depreciation rates to vary greatly across countries, nor are there any data that would 
allow us to estimate country-specific depreciation rates,” when testing the Solow growth model (p. 
410).  Since then, this assumption seems to have persisted.  The present paper is the first that we know 
of to seriously consider and measure differences in the rate of capital depreciation across countries. 
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(6) 

 

′ I e *( ) = β ′ F .()K0P  
 
F′, P, K0 and

 

β are positive constants, while I′ increases monotonically from zero. 
Thus, there always exists an e* satisfying equation (6).  This equation states that the 
optimal level of adaptation effort e* equalizes the marginal costs of current effort with 
the marginal benefits from future protection, given capital and climate endowments. 
Increasing P, K0 or β only increases the term on the RHS, raising e*.  Decreasing the 
costs of protection (e.g. through technology) can reduce 

 

′ I .(), also raising e*.  
 
In this paper, we focus on the prediction 
 

(7) 

 

∂e *
∂P

> 0 
 
which states that populations with higher initial depreciation due to cyclones will 
exert greater effort towards protecting themselves.  The pre-adaptation rate of 
depreciation P can increase if the probability of a storm p(x) increases or the 
probability a unit of capital is lost to a storm d(x) increases.  Because d(x) describes a 
physical relationship, we assume it is fixed across locations.  However, the TC 
climate of a location determines the probability of storms p(x), thereby determining P.  
Thus, equation (7) states that populations will adapt to intensifying TC climates by 
investing more in protecting themselves.  The objective of this paper is to quantify 
this relationship by measuring how much adaptation occurs in response to changes in 
TC climates. 
 
Previous work (Kahn, 2005, Toya and Skidmore, 2007, Noy, 2009) has focused on 
analogs to the prediction 
 

(8) 

 

∂e *
∂K0

> 0 
 
which states that populations with a higher capital density will exert more effort to 
protect that capital from TCs (because the cost of protection is independent of K0).  
Notably, however, none of these studies were able to control for storm intensity x and 
thus could not control for the climate parameter P.  If P and K0 were correlated, then 
the result in equation (7) suggests that these earlier analyses could have been biased.  
Because we are the first study to measure P, we will briefly revisit and empirically 
confirm equation (8) while controlling for climate.   
 
The final prediction of equation (6), which we only note because it contrasts with 
common arguments, states  
 

(9)  

 

∂e *
∂β

> 0, 

 
i.e. populations that value the future less will also invest less in adaptation.  During 
the economic analysis of anthropogenic climate change, it is often noted that 
voluntary mitigation of greenhouse gas emissions requires that we value future 
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consumption.  In cases where the valuation of future consumption is low, it is 
sometimes argued that investment in protection from climate changes (adaptation) 
represents a more incentive-compatible approach to global cost minimization. 
Unfortunately, equation (9) suggests that this notion may be optimistic, since a low 
valuation of future consumption represents a hazard to voluntary adaptation as well10.  
Lacking data on 

 

β, we leave empirical verification of equation (9) to future work. 
 
 
Empirical approach 
 
In our empirical test of equations (7) and (8), we cannot directly observe e*.  
Therefore, we must infer e* by observing how actual damages respond to actual TC 
events conditional on climate and capital endowments. When adaptation effort is 
efficient and a TC of intensity x actually strikes an economy, the capital damage D is  
 
(10) 

 

D = K0d(x)(1− e*) 
 
which can be rewritten 
 

(10’) 

 

D
F(K)

= d(x)(1− e*) 

 
following our normalized linearization11

 

F(K) = K .  The term on the left is called 
“normalized damages,” following Pielke and Landsea (1998) who first proposed its 
usage, and we explore how it responds to storm intensity x.  If adaptive effort e* is 
higher, the marginal response of normalized damages to increases in x will be smaller.  
We see this if we differentiate equation (10’) first by x and then by e*: 
 

(11) 

 

∂ 2 D
F(K )

∂x∂e* = −d'(x) < 0  

 
Thus, to test equations (7) and (8), we multiply them by the LHS of equation (11) to 
obtain the respective hypotheses 
 

H7: 

 

∂ 2 D
F(K )

∂x∂P
≈

∂ 2 D
F(K )

∂x∂xmean

< 0  

 

H8: 

 

∂ 2 D
F(K )

∂x∂K0

≈
∂ 2 D

F(K )

∂x∂F(K0)
< 0. 

 
Hypothesis H7 says that the response function of normalized damages to TC exposure 
(

 

∂ D
F(K ) /∂x ) is shallower when the climate endowment is more TC-prone.  Hypothesis 

H8 says that the response function is also shallower if an economy has more capital 

                                                        
10 It remains true that mitigation of greenhouse gasses requires that individuals provide a public good, a 
challenge that is not present for adaptation. 
 
11 We take advantage of the linearization here because we cannot observe capital densities and instead 
can only observe output levels. 



 9 

(output).   Hypothesis H7 is our focus, because we are interested in how economies 
adapt to their TC climate, however H8 should hold simultaneously.  The objective of 
our empirical analysis is to estimate these two parameters. 
 
 
3. Empirical analysis 
 
Our empirical objective is to measure how much adaptation occurs in response to a 
particular TC climate. Our approach to this problem has three steps.  First, we develop 
a globally comprehensive data file of every country’s exposure to every TC during 
1950-2008. Second, we use this new dataset to develop a general and robust 
specification for the response of normalized damages and normalized deaths to TC 
exposure. Third, we use this specification to measure how storm losses vary across 
climates, testing hypothesis H7 and implicitly measuring the extent of long-run 
adaptation. 
 
 
3-1. Data files 
 
Our analysis requires using data that describe economic and human losses, TC 
exposure, and TC climatology. Summary statistics of these data are presented in 
Table 1.  
 
Tropical Cyclone Data 
 
A major innovation of our analysis is the development of a comprehensive data file 
describing physical measures of TC incidence.  Lacking such comprehensive and 
high-quality data, previous international studies were unable to detect any influence 
of storm intensity on damages or deaths (Kahn, 2005, Noy 2009), a necessary 
precondition to measuring whether effective adaptation to TCs is occurring. To avoid 
the attenuation bias that overwhelmed these previous studies, we require a dataset that 
is simultaneously both global in scale and sufficiently detailed that it describes 
economically meaningful measures of TC exposure. To achieve this, we generate 
measures of TC incidence by reconstructing every TC in the International Best Track 
Archive for Climate Stewardship (IBTrACS) database (Knapp, 2009) as a translating 
vortex using the Limited Information Cyclone Reconstruction and Integration for 
Climate and Economics (LICRICE) model (see Hsiang, 2010, for a description of the 
model12).  LICRICE reconstructs the wind field for all 6,712 storms by interpolating 
among 191,822 6-hour observations over every 0.1° × 0.1° pixel between 48°N-48°S 
latitude13.   
 

                                                        
12 Since Hsiang (2010), version 2 of LICRICE was built, substantially improving upon its original 
accuracy. However these improvements were focused on numerical methods and the heuristic 
description in Hsiang (2010) remains accurate. 
 
13 While there is some amount of TC activity beyond these latitude limits, it is relatively trivial.  More 
importantly, however, the numerical scheme of LICRICE becomes unstable at high latitudes, rendering 
extension of the model beyond 48° cost-ineffective. 
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To match TC exposure with socioeconomic information, physical measures of TCs 
must be aggregated and spatially averaged so there is a single observation for each of 
233 countries in every year14. We summarize annual TC exposure at a location using 
two different statistics: (1) the maximum TC wind speed achieved during a given year 
and (2) the total energy per unit area dissipated by all storms at a location over each of 
their respective lifetimes. For succinctness, we refer to the former statistic as “wind 
speed” and the latter as “energy”. Neither statistic is a perfect measure of TC wind 
exposure, however each has its benefits. 
 
TC wind speed is simply the maximum wind speed achieved at a location during the 
course of a calendar year. If a location experiences multiple storms, the annual 
maximum is the maximum of the maximum speed achieved in each storm.  Pixel-
specific wind speed estimates are spatially averaged15 over each country to aggregate 
exposure into country-by-year observations.  In all of our graphs we use wind speed, 
rather than energy, as our independent variable because it is easier to interpret units of 
“meters per second” compared to “meters-cubed per second-squared" (the units of 
energy).  Also, it is important to keep in mind that reported wind speed values are 
area-averages, so locations that are hardest hit by a TC will invariably experience 
wind speeds greater than the values we report.  
 
TC energy is more precisely described in Hsiang (2010) as a “power dissipation 
density index.”16 This measure is similar to “accumulated cyclone energy” (ACE), 
which is commonly used in the field of meteorology (Bell et al., 2000), or the “power 
dissipation index” (PDI) introduced by Emanuel (2005). The most important 
difference from these measures is that our measure is a spatial density, i.e. it measures 
the amount of energy dissipated per square-meter of land area. ACE or PDI were 
designed for climatological studies that were not concerned with where TC energy 
was released; only how much was released in total. However, because we are 

                                                        
14 It would be theoretically possible to match country-by-storm exposure to country-by-storm losses, 
rather than aggregating outcomes annually.  While this approach would produce some econometric 
benefits, it is not computationally feasible with the current version of LICRICE.  To see why, note that 
each of the 6,712 storms generates 960 observations (one for each 0.1° × 0.1° cell), producing a total of 
6,443,520 storm-by-pixel observations that must then be matched to each of the 223,680 country-by-
pixel observations. 
 
15 It may be possible to reduce our measurement error by using population-weights, following Jones 
and Olken (2010) and Hsiang et al. (2011), or capital-weights, following Nordhaus (2010), when 
aggregating our exposure measure.  However, we fear that if populations strategically locate 
themselves or capital in response to TC risk, this may bias our estimated coefficients in some unknown 
way.  Thus, we use area-weights because populations cannot manipulate this parameter, giving us 
confidence that our RHS variable is fully exogenous.  This conservative approach may mean that our 
estimation is inefficient, in the sense that it does not take advantage of all available data, but this should 
only make our inferences more conservative. 
 
16 Following Hsiang (2010), the power dissipation density index (PDDI) is:  
 

 

PDDIit =
κ
Ai

Vs
wind (z)3

Vs
storm

s∈t
∑

z∈i
∑  

 
where 

 

Vs
storm  is the translational velocity of the center of a storm indexed by s, Vwind

s(z) is the velocity 
of wind at grid cell z, Ai is the area of country i, and 

 

κ  is a constant capturing drag and the density of 
air. 
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interested in social impacts that occur in a reference-frame that is not translating with 
each storm, we must take care to measure energy as a location-specific density.  The 
most immediate implication of changing the reference-frame, from one that moves 
with a storm to one that is fixed to a location, is that the speed of a storm’s motion 
(translation of the storm center) becomes important.  Storms that pass over a location 
quickly will dissipate less energy at the surface when compared to storms of equal 
intensity that pass over a location slowly, a feature that is well captured by our energy 
measure.  Throughout this paper, energy is presented in standardized units since its 
raw units (m3/s2) have little or no intuitive meaning.  
 
In all the following tables, we present results for both wind speed and energy.  
Maximum wind speed is a useful concept because physical capital may fail 
catastrophically at a critical level of stress, as pointed out by Nordhaus (2010), and its 
units are intuitive.  Unfortunately, maximum wind speed is unchanged if a location 
experiences two identical storms, compared to just one, in the same year.  Energy is a 
useful independent variable in this situation, because it is natural and intuitive to sum 
quantities of energy released during separate events. Regrettably, the units of energy 
are non-intuitive and it tends to produces noisier estimates because its distribution is 
more highly skewed.  Thus neither measure is obviously superior, motivating our 
presentation of both. However, the two measures are highly correlated: Figure 1 
shows country-by-year observations of wind speed against energy for reference. In 
most of the specifications presented, models that use wind speed have slightly higher 
R-squared values, although this is not always true and the margin of improvement is 
very small. 
 
As discussed in Section 2, TC risk (climatology) should be defined as the likelihood 
that a unit of capital is destroyed, integrated over all possible TC intensities (equation 
2).  Assuming reasonable functions for p(x) and d(x) in a linearized model, we 
showed that xmean was an approximately sufficient statistic for this integral. Therefore, 
we summarize the TC climatology of a country with its mean exposure over the 
period 1950-2008. Figure 2 depicts spatial variations of this wind speed climatology 
measure. The maps indicate that exposure to TCs is concentrated in specific 
geographical areas, namely, over the warm tropical oceans and the nearby coastal 
regions downwind (to the west) in the tropics and mid-latitudes. TC climatologies are 
most intense for the island countries of the Pacific Ocean and the Caribbean, while 
TC risk is absent for countries deep in the middle of continents and also for those very 
close to the equator.  
 
 
Economic data 
 
Data on economic losses and deaths from TCs are obtained from the Emergency 
Events Database (EM-DAT: OFDA/CRED, 2009). The EM-DAT data files contain 
information provided by national governments, international organizations, NGOs, 
and private companies (e.g., re-insurance companies) on a self-reporting basis. EM-
DAT data of economic losses are an estimate of negative economic impacts that may 
include lost consumption goods, lost productive capital or cost of business 
interruption, depending on the protocols of the reporting institution (OFDA/CRED, 
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2009). However, for the sake of simplicity and the model in Section 2, our language 
decribes these losses as if they arose entirely from the loss of capital17.  
 
Some authors note that the reporting system for EM-DAT is prone to certain biases, 
possibly encouraging reporting entities to either under- or over-report losses (for 
example, see Skidmore and Toya, 2002). Notably, Gall et al. (2009) are able to 
identify systematic biases for the US data reported in EM-DAT by comparing it with 
other datasets of natural disasters. These endogneous reporting errors might threaten 
the validity of previous studies that use EM-DAT to generate independent variables 
for regression analysis (for example, see Noy, 2009 and Loayza et al. 2009); however, 
we are able to treat them as classical unobserved disturbances since we only use EM-
DAT data to generate our dependant variables and restrict our independent TC 
variables to objective LICRICE output18. 
 
To match equation (10’), we normalize the raw economic damages and deaths from 
EM-DAT by each country’s GDP and population,19 respectively. GDP data are from 
the United Nations National Accounts files (United Nations, 2009), and population 
data are from the World Development Indicator files (World Bank, 2008). 
 
 
 
3-2. A General and Global Model of Tropical Cyclone Losses 
  
There is no established approach for estimating annualized, country-level estimates of 
deaths and damages from TCs using objective physical measures because no prior 
study had access to objective physical measures.  Therefore, we begin our analysis by 
searching for a reasonable functional form to approximate d(x) in equation (10’). 
 
 
Model Specification 
 
To our knowledge, no country-level analysis has successfully measured the response 
of deaths or damages to physical measures of TC exposure.  The closest related 
studies are Hsiang (2010), which uses the LICRICE energy variable to measure the 
GDP-growth response to TCs, and Nordhaus (2010) and Mendelsohn et al. (2010), 
both of which estimated storm-specific damages within only the United States.  Both 
Nordhaus and Mendelsohn et al. estimate storm-specific losses using a log-log 
specification where the dependent variable is maximum wind speed (or minimum 
central pressure) at landfall.  Both studies find astonishingly high elasticities (nine and 

                                                        
17 Mendelsohn et al. (2010) point out that capital losses to cyclones should describe the net present 
value of all the future output streams that would have originated from the lost capital.  However, it is 
possible that lost capital would have provided public goods or private spillovers that are not 
internalized by its owner and thus would not be captured in its price. 
 
18 In cases where these additive errors are systematic, we hope that year fixed-effect and country fixed-
effects will remove any artificial signals. 
 
19 The EM-DAT data contain absolute quantities of economic losses and deaths. This means that large 
economies with large populations tend to exhibit large losses in the dataset. This linear normalization 
of damages and deaths was first proposed by Pielke and Landsea (1998) and continues to be used by 
more recent analyses (eg. Nordhaus, 2010).  
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five) with respect to wind speed at landfall, results that they struggle to explain. In 
contrast, these extraordinary elasticities are not found in Hsiang’s growth regressions 
when LICRICE output, which is integrated over the entire life of a storm rather than 
only describing landfall statistics, is employed as an independent variable.  Observing 
this disagreement, we re-examine the basic damage model when LICRICE output is 
used rather than assuming that a log-log specification is appropriate. 
 
Figure (3) compares bivariate log-linear and log-log models for normalized damages 
and deaths when the independent variable is wind speed (from LICRICE). Local 
linear regressions (dashed lines) suggest that when using a linear fit a log-linear 
model is probably more suitable. One could model the log-log relationship using a 
non-linear fit, perhaps by including a wind speed2 term, however such a model might 
not be desirable because the logarithmic transformation distorts the independent 
variable at low values, causing small cyclone events to exert a large influence on 
regression coefficients.  Thus, the preferred log-linear specification suggests that 
damages are an exponential function of wind speed, as well as energy, rather than 
being a power-function of these parameters. 
 
 
Global Estimates 
 
We begin by estimating the log-linear model with ordinary least squares in the general 
model 
 
(12)  

 

log(Zit ) = α⋅ xit + µi +θ t + γTemp ⋅ Tempit +γ Precip ⋅ Precipit +ε it  
 
where Zit is either normalized damages or normalized deaths, xit is one of the TC 
exposure measures (wind speed or energy), 

 

µi  is a country fixed-effect,

 

θ t  is a year 
fixed-effect, Tempit  is annual mean temperature, Precipit is annual mean 
precipitation20 and 

 

ε it  is a disturbance term with a mean of zero. The parameter of 
interest is 

 

α , the semi-elasticity of losses to TCs.  Country fixed-effects are included 
to account for unobserved differences in average losses between countries while year 
fixed-effects flexibly account for unobserved changes in losses over time.  
 
Table 2 tabulates estimates of

 

α  from equation (12) for both damages and deaths 
using both TC measures. In column 1 no controls are included, whereas country 
fixed-effects, year fixed-effects and weather controls are sequentially added to the 
model in columns 2-4. In all sixteen models we obtain estimates that are both 
economically and statistically significant.  Moreover, across any of the four panels, 
the estimated value of 

 

α  hardly varies, suggesting that to a first approximation 
country-effects,  year-effects and weather are unimportant for unbiased estimation of 

 

α .  Nonetheless, we retain the non-parametric controls 

 

µiand 

 

θ t  wherever possible21. 

                                                        
20 Temperature and precipitation are spatially averaged for the same reasons that TC exposure is 
spatially averaged. Temperature data is from the National Center for Environmental Prediction (NCEP) 
reanalysis version 1 (CDAS).  Precipitation data is from the CPC Merged Analysis of Precipitation 
(CMAP).  We experimentally include these variables as controls in the model because they are 
correlated with storm exposure, but we find that they are unimportant.  
 
21 Weather controls are dropped because they are not available for all country-years and appear to be 
irrelevant for the estimation of 

 

α . 
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Our point estimates indicate that in a globally pooled sample of countries, increasing 
wind speed by one meter per second22 increases normalized damages by 10% and 
normalized deaths by 6%.  This implies that damages (deaths) double23 for an 
increase in wind speed by 6.9 (11.6) m/s.  We translate these coefficients into a 
memorable but approximate rule of thumb: If an entire average country went from 
being exposed to a Saffir-Simpson Category 1 hurricane to a Category 2 hurricane, 
expected damages would approximately triple while expected deaths would 
approximately double24. 
 
To examine how general these estimates are, we subsample our data by continent and 
present these results in Table 3. Although the coefficients for Oceania and Africa are 
noisy and statistically insignificant due to the small number of observations in these 
regions, the point estimates across continents are not statistically different from one 
another (except for the single pair-wise comparison between North America and Asia 
in panel d).  In the following sub-section we will explore variations in these functions 
attributable to climate and capital endowments; however, we feel that overall Table 3 
illustrates a remarkable amount of agreement in the social responses to TCs across 
dramatically different regions of the world. 
 
Taken together, Tables 2 and 3 demonstrate that a log-linear model of normalized 
losses to TCs, using output from LICRICE, is both statistically robust and globally 
general.  With confidence in the fundamentals of our statistical specification, we now 
use it to look for evidence of adaptation to TC climates. 
 
 
 
3-3. Evidence of Adaptation to Tropical Cyclone Climates 
 
The results from equation (6) predicted that some populations would invest more 
effort towards costly adaptation to TCs and equation (10’) illustrated how we can 
estimate variation in adaptation, despite our inability to directly observe adaptation 
effort e.  Here, we explicitly test whether countries having more intense TC climates 
have lower marginal losses to cyclone exposure (H7), indirectly testing whether 
countries have adapted to their TC climates. 
 
Figure 4 compares the response of deaths to wind speed in three East Asian countries, 
providing prima facie evidence that countries adapt to their TC climate and making 
clear the relationship that we are examining.  Japan has the highest climatological 
wind speed (>20 m/s) and also exhibits a response function with the shallowest slope; 
whereas Vietnam is endowed with the lowest climatological wind speed (~12 m/s) 

                                                                                                                                                               
 
22 1 meter per second = 2.24 miles per hour = 1.94 knots. 
 
23 

 

loge (2) /0.10 = 6.9 and 

 

loge (2) /0.06 =11.6. 
 
24 The +9.8 m/s increase in wind speed leads to an approximate tripling (2.7) and doubling (1.8) using 
the estimates from column 3 of Table 2. If the column 2 estimates of 11% and 7% are used instead, this 
intensification leads to an almost exact tripling (2.95) and doubling (1.99).  
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and exhibits the steepest response to actual TC events. The Philippines is in between 
these two countries in terms of both its climatology and its response. This pattern of 
decreasing marginal losses associated with increasing climatological wind speed is 
consistent with the notion that populations exposed to greater TC risk invest more 
effort in protection.25  
 
Figure 5 uses a non-parametric approach26 to estimate losses to actual TC wind speed 
conditional on either a countries’ climatological or capital endowment, where income 
in 1970 is used as a proxy for the initial capital stock.  Across all four panels, losses 
rise with actual wind speed across all climatologies and income levels indicating that 
all types of countries suffer from increased TC exposure.  Furthermore, in agreement 
with our model of optimal adaptation, losses are largest for events in the upper-left 
corner of all the panels: when countries with climatologically low TC risk (capital 
density) are struck by intense storms, a larger fraction of capital is lost compared to 
countries where risk (capital density) is higher. 
 
Using a flexible approach, Figure 5 seems to confirm hypotheses H7 and H8 in the 
cross-section of counties, however it is useful to put more structure on our model so 
that we can parameterize adaptation responses and formally test these two hypotheses 
simultaneously.  To do this, we estimate a variant on equation (12) where we drop 
country fixed-effects and instead allow 

 

α  to vary as a function of a country’s TC 
climate and its income level in 1970.  We estimate 
 

(13) 

 

log(Zit ) = [α0 + α1⋅ mean _ xi + α2 ⋅ ln(GCPpc1970)i]⋅ xit

+ω 0 +ω1⋅ mean _ xi +ω 2 ⋅ ln(GCPpc1970)i +θ t +ε it
 

 
where mean_xi is a country’s climatological exposure to TC measure x and 
ln(GPDpc1970) is a country’s log GDP per capita in 1970.  The parameter of primary 
interest is 

 

α1, which describes how changes in TC climatology alter the marginal 
effect of actual TC exposure xit.  We are also interested in 

 

α2, which explains how 
income influences the marginal effect of TC exposure.  Hypotheses H7 and H8, 
respectively, predict that both of these coefficients should be negative if populations 
adapt optimally to their TC climate. 
 
Table 4 presents coefficient estimates for equation (13).  Columns 1-4 present the 
response of normalized damages while columns 5-8 tabulate the response of 
normalized deaths. Columns 1-2 and 5-6 contain estimates that use wind speed as the 
independent variable, while columns 3-4 and 7-8 contain estimates that use energy.  
Models in odd numbered columns only estimate interactions with mean_x, while even 
numbered columns simultaneously estimate interactions with ln(GDPpc1970). 
 
 

                                                        
25 The steepness of the response functions for these three countries is also consistent with the other 
implication of the analytical model, that is, TC events with equal intensities cause less damage to a 
higher-income country than to a lower-income country (hypothesis H8). Indeed, Japan exhibits the 
highest income level among the three countries, whereas Vietnam has the lowest. 
 
26 The figures depict Nadaraya-Watson estimates using two-dimensional Epinechnikov kernels. 
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The Effect of Climatological Cyclone Risk on Adaptive Effort 
 
Across all four pairs of independent and dependent variables, we estimate that TC 
exposure has positive marginal losses (

 

α0) and that the coefficient for the climate 
cross term (

 

α1) is negative. In seven out of eight models, both coefficients are highly 
statistically significant, with only one out of sixteen coefficients being 
indistinguishable from zero (

 

α1 in column 2).  The main effect 

 

α0 for wind speed 
(energy) is to increase normalized damages 20% per m/s (98% per s.d.27) and to 
increase normalized deaths by 17% per m/s (73% per s.d.).  These marginal effects 
are larger than the average effects shown in Table 2 because all countries in the 
pooled estimate have positive TC risk and the presence of TC risk attenuates this 
marginal effect through adaptation effort28. Examining the interaction term 

 

α1, we 
find that increasing the average wind speed (energy) exposure of a country by 1 m/s 
(1 s.d.) reduces marginal normalized damages by –0.7% per m/s (–27% per s.d.) and 
reduces normalized deaths by –0.6% per m/s (–19% per s.d.).  These negative 
coefficients indicate that populations facing higher levels of TC risk exert more effort 
to protect themselves from TC events.  We can infer this increase in effort because we 
observe that high-risk populations suffer lower marginal losses, relative to their low-
risk counterparts, when both groups are struck by physically identical events. 
 
To put these estimates into context, we display the extent of adaptation in Figure 6.  
Focusing on the top panel, we plot the marginal effect of actual wind speed on 
normalized damages before populations invest in any adaptive effort (20.3% per m/s).  
We then plot how much these marginal damages are mitigated as the climatological 
wind speed increases (–0.7% per m/s 

 

×mean wind speed). The grey area depicts 
marginal losses that are averted through adaptive effort, while the vertical distance 
between the two lines is the actual marginal loss that we observe when populations 
are exposed to actual TC events.  
 
The lines in Figure 6 can be directly connected to the theory developed in Section 2. 
The marginal damages before adaptation are described by d(x) in equation (10’), and 
the semi-elasticity of this function is the horizontal line in the top panel.  In equation 
(10’) the losses averted through long-run adaptation effort are 

 

d(x)⋅ e , and the 
upward sloping curve represents the semi-elasticity of this function.  This function is 
upward sloping because adaptive effort e increases with TC risk.  The vertical 
difference between these lines is 

 

d(x)⋅ [1− e], the observed normalized losses29 on the 
RHS of equation (10’). 
 
The top two panels of Figure 6 suggest there is great scope to adapt to TCs, however 
it is important to examine where actual populations are on these curves under the 
current climate.  To illustrate this, the bottom panel displays a histogram of countries 
in our dataset according to their climatological wind speed for the period 1950-2008.  
We omit all the countries with zero TC exposure (and thus zero TC risk) and only 
display countries with positive TC risk.  A large number of countries have very low 
                                                        
27 One standard deviation in energy is a considerably larger change than one meter per second in wind 
speed. Recall from Table 1 that one standard deviation in wind speed is 7.7 meters per second. 
28 The estimates in Table 2 also were derived from a pooled sample that over-sampled high risk 
countries relative to low risk countries. 
 
29 In the integrated assessment literature, an analogous value would be termed “residual damages.” 
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(but non-zero) levels of TC risk, with an almost equal number of countries spread 
almost uniformly across TC risk levels up to 15 m/s.  Above 15 m/s, there are very 
few countries, and they are exclusively from East Asia or small island states.  Thus, 
while there is strong evidence that extensive adaptation to TCs is feasible, most 
populations at risk are currently in climates where they do not adapt at all or where 
adaptation is limited. There are very few countries in the current climate where the 
incentives to adapt are sufficiently strong that marginal losses are dramatically 
reduced (for example, e > 0.5). 
 
Figure 6 can be used to give us a sense of how populations might adapt to future 
changes in their TC climate.  In the middle panel we mark a “climate change” that 
increases a countries climatological wind speed by about 2 m/s, which is a large 
change.  This raises the optimal level of adaptation e* by a small amount, reducing 
the actual marginal losses from storms by about a percentage point.  More generally, 
we can use the coefficients in Table 4 to ask how much of the additional risk 
presented by a climatic change is mitigated by additional adaptive effort.  To do this, 
we imagine that actual TC exposure in every year increases by 1 m/s.  This 
necessarily implies that average exposure also increases by 1 m/s.  In this thought 
experiment, unmitigated losses in each year would rise by 

 

α0, which in turn increases 
adaptive effort so that marginal losses in each year fall by 

 

−α1. For a country with a 

very low initial risk, the ratio 

 

−α1

α0

 describes how much of the new risk posed by 

climate changes will be eliminated by new adaptation in the long run. According to 
our estimates30 in Table 4, this ratio ranges from 0.016-0.035, indicating that if 
climate changes lead to a marginal increase in TC risk, about three one-hundredths 
(3%) of this new risk is mitigated by new long-run adaptations31. This relatively small 
value is consistent with Nordhaus’ (2010) argument that if current adaptation is 
optimal, then by the envelope theorem (Samuelson, 1998) adaptation to climate shifts 
are second-order relative to the direct costs of those shifts.  He argues that at the 
current optimum e* the marginal costs and the marginal benefits of adaptation are 
already equal (equation 6), so small shifts in the climate cannot generate large net 
gains from additional adaptation.  Our estimate that most of the additional TC losses 
from climate changes go unmitigated suggests that I’(.), the marginal cost function for 
adaptation, is relatively steep near the current optimum. 
 
 
The Effect of Capital Density on Adaptive Effort 
 
If populations optimally adapt to their TC climate according to equation (6), then, as 
stated in hypothesis H8, economies with a higher capital density will invest more in 
adaptation.  This hypothesis was described, albeit less formally, by Kahn (2005), 
Toya and Skidmore (2007), Noy (2009) and Hsiang (2010) to explain some of their 
empirical findings. However, as discussed earlier, their inability to measure and 
control for TC-risk might have threatened the validity of their results.  Here we briefly 
                                                        
30 We focus here on the estimates for wind speed because its units are a better approximate for marginal 
changes. 
 
31 This number is larger for countries with higher baseline risk because their baseline level of 
adaptation is higher.  However most countries have relatively low levels of adaptive effort in the 
current climate, with the median country having risk levels near zero. 
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show that hypothesis H8 holds in the data when controlling for TC-risk, in support of 
these earlier findings 
 
The even-numbered columns in Table 4 estimate the full model in equation (13) using 
each of the four dependant-independent variable pairs. In all four specifications, the 
coefficient to the interaction between ln(GDPpc1970) and TC exposure 

 

α2 is 
negative, and it is distinguishable from zero in three out of four specifications (in the 
model where it is not significant, it is because the standard errors are large rather than 
because the coefficient is small).  We find that an increase in ln(GDPpc1970) of 0.1 
(income rises 10%) leads to a decline in the semi-elasticity of normalized damages by 
–0.2% per m/s, this is one one-hundredth of the losses that are suffered prior to any 
adaptation (–20% per m/s).  The effect for normalized deaths is identical, with an 
income gain of 10% leading to a reduction in unmitigated deaths by one one-
hundredth. 
 
 
Coefficients for Risk and Capital when Not Interacted with Cyclone Exposure 
 
For completeness, Table 4 contains estimates for the coefficients 

 

ω1 and 

 

ω 2 , however 
we do not take these point estimates seriously.  Both average TC risk and income in 
1970 are correlated with many important omitted variables, such as distance to the 
coast and level of democracy.  Thus, we control for TC risk and income in 1970 only 
so that they can bear the loading of these omitted variables, limiting their influence on 
our coefficients of interest 

 

α1 and 

 

α2.  It is possible that these point estimates contain 
some information, but we cannot know how much.  The coefficients on TC risk 
measures tend not to be distinguishable from zero, with signs that change across 
models. In contrast, the coefficients on income are reasonably consistent across 
models and are statistically different from zero, perhaps suggesting that they should 
be explored rigorously in future work. 
 
 
 
4. Summary and Discussion 
 
Summary 
 
We have developed a simple analytical model of optimal adaptation to TCs in a 
rational and neoclassical framework.  This framework allows us to infer adaptation 
effort using data on TC exposure and losses, enabling us to verify the model’s 
prediction that adaptation effort increases as TC climates intensify.  We are the first 
paper that is able to observe adaptation with this approach because we are the first to 
construct a global dataset of TC exposure that is based on physical parameters, 
allowing comparisons across countries.   
 
We document a large amount of variation in adaptive effort across countries, 
indicating there is tremendous scope for adaptation to TCs.  Moreover, we are able to 
estimate statistically precise estimates for the adaptive response to changes in TC 
climates. However, while we find strong evidence that adaptation is occurring, we can 
confidently reject the scenario where marginal changes in climate are accompanied by 
substantial changes in adaptive effort.  
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Adaptation in the Current Climate 
 
It is sometimes suggested that natural disasters occur because of mismanagement, 
political actions or irrational behavior.  While our results do not refute these claims, 
they reject the notion that we would no longer observe disaster losses if we eliminated 
irrational behavior, politics or mismanagement.  In an economy that is rationally and 
optimally managed, there will always be positive losses to disasters so long as there 
are sufficiently convex costs to protection.  It will never be rational to mitigate all 
disaster risk and so some losses will persist.  With regards to the TC events analyzed 
in this study, we find no evidence that the management of these risks was irrational. 
 
 
Adaptation in the Future Climate 
 
We find strong evidence that if TC climates intensify, ceteris paribus, it will induce 
populations to increase their investment in adaptation.  However, the estimated 
magnitude of the response is both small and precise, so we can confidently reject the 
hypothesis that climate changes will themselves lead to large investments in 
adaptation.  Our results make it clear that adaptation to TCs is technologically 
feasible, since some countries already exhibit extensive adaptation.  However, major 
adaptive investments will not be cost-effective for most populations if changes to 
future TC climates are relatively marginal. 
 
The small adaptive response that we measure (~3%) is consistent with Nordhaus’ 
(2010) application of the Envelope Theorem to climate adaptation, however it is 
strikingly smaller than some related estimates in the integrated assessment literature. 
For example, the assumptions of the AD-DICE model generate projections of new 
adaptive investments that reduce marginal losses by ~30% (de Bruin et al, 2009).  
Importantly, the AD-DICE model accounts for a variety of adaptive investments that 
mitigate many types of climatic changes while our estimates are only applicable to 
changes in the TC climate, so it is expected that their estimates will not equal ours.  
However, the fact that our estimates differ by a full order of magnitude motivates us 
to question why our estimates are so dissimilar.  Our theory suggests that adaptive 
responses to marginal climate changes will be small when the cost function for 
adaptation I(.) is very convex, i.e. I’(.) is steep (recall equation 6). Thus, our results 
suggest that in the present equilibrium, the marginal cost of adaptation already 
increases sufficiently fast that it prevents additional investments.  In contrast, large 
adaptive efforts seem to emerge from integrated assessment models when they 
assume that the first several units of effort come at low or zero marginal cost.  We 
think that in the current equilibrium, it is certainly plausible that the marginal cost of 
adapting to non-TC changes is lower than the marginal cost of adapting to TCs;  
although, it seems equally plausible that in the absence of solid empirical estimates, 
modeling groups have underestimated the convexity of adaptation costs.  Hopefully, 
future empirical work on adaptation to non-TC changes will tell us which of these two 
scenarios dominates. 
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Adaptation and Wealth 
 
Our results underscore previous findings that the marginal damage of disasters decline 
with the income level (Kahn, 2005, Toya and Skidmore, 2007, Noy 2009, Hsiang, 
2010), by demonstrating that the relationship holds even when disaster risk is 
accounted for. In contrast, we find no evidence to support the arguments of 
Kellenberg and Mobarak (2007) or Schumacher and Strobl (2008) that the damage-
income relationship should be an inverted U-shape with the highest relative damages 
in the middle-income countries32.  Our theory provides a clear logic for why marginal 
damages decline monotonically with income: income is correlated with capital 
density and high capital densities increase the benefits of adaptive investments.  
Unlike previous theories, ours is simple and does not require a model of credit 
constraints or for preferences to change with income33.  Furthermore, it is unified with 
the theory that explains why populations adapt to more intense TC climates. 
 
 
  

                                                        
32 An inverted U-shape would be visible in our non-parametric plots in Figure 5. 
 
33 In a closely related empirical literature, Jones and Olken (2010) and Hsiang (2010) find that the 
influence of surface temperature variations on GDP growth is largest for low-income countries.  
Similarly, Hsiang et al. (2011) find that ENSO variations influence conflict most strongly in low-
income countries.  A formal model explaining these interactions has not been proposed, however it is 
possible that low capital densities may also play a role in these situations. 
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Table 1. Summary statistics of the data 
 
 

Variable Units Obs. Mean Std. Dev. Min Max 

Annual economic  
losses  
 

thousand US$ 575 968478 7310460 5 1.58E+08 

Annual deaths  
 lives 772 1179.4 13072 1 300000 

Wind speed  meters per second 13688 3.39 7.70 0 78.34 

Energy standard 
deviations 13688 0.23 1.00 0 23.46 

Climatological wind 
speed 1950-2008 meters per second 233† 3.39 5.69 0 27.73 

Climatological 
energy 1950-2008  

standard 
deviations 233† 0.23 0.54 0 4.32 

† Signifies the number of unique observations (countries)    
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Table 2. Global tropical cyclone economic losses and deaths  
 
 
 
Models: (1) (2) (3) (4) 
     
Country Fixed-Effects NO YES YES YES 
Year Fixed-Effects NO NO YES YES 
Temp. & Precip. Controls NO NO NO YES 
          
 Panel (a) 
  Dependent variable: log(damage/GDP) 
Wind speed (m/s) 0.108*** 0.106*** 0.101*** 0.109*** 
 [0.012] [0.015] [0.013] [0.017] 
     
Observations 420 420 420 359 
R-squared 0.170 0.537 0.630 0.641 
     
 Panel (b) 
  Dependent variable: log(killed/population) 
Wind speed (m/s) 0.085*** 0.070*** 0.058*** 0.054*** 
 [0.006] [0.010] [0.007] [0.009] 
     
Observations 667 667 667 468 
R-squared 0.181 0.561 0.656 0.700 
     
 Panel (c) 
  Dependent variable: log(damage/GDP) 
Energy (s.d.) 0.548*** 0.404*** 0.425*** 0.507*** 
 [0.064] [0.074] [0.067] [0.069] 
     
Observations 420 420 420 359 
R-squared 0.153 0.519 0.620 0.638 
     
 Panel (d) 
  Dependent variable: log(killed/population) 
Energy (s.d.) 0.349*** 0.278*** 0.243*** 0.286*** 
 [0.036] [0.042] [0.040] [0.048] 
     
Observations 667 667 667 468 
R-squared 0.116 0.556 0.654 0.699 
Standard errors in brackets (clustered by year), *** p<0.01   
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Table 3. Tropical cyclone economic losses and deaths by continent 
 
 
 
Sample: North America Oceania Asia Africa 
          
 Panel (a) 
  Dependent variable: log(damage/GDP) 
Wind speed (m/s) 0.086** 0.091 0.129*** 0.375 
 [0.035] [0.101] [0.042] [0.174] 
     
Observations 161 49 173 33 
R-squared 0.683 0.974 0.548 0.956 
     
 Panel (b) 
  Dependent variable: log(killed/population) 
Wind speed (m/s) 0.053*** 0.045 0.074*** -0.028 
 [0.015] [0.034] [0.018] [0.054] 
     
Observations 204 68 335 54 
R-squared 0.783 0.878 0.547 0.854 
     
 Panel (c) 
  Dependent variable: log(damage/GDP) 
Energy (s.d.) 0.410*** 0.913 0.426** 0.933* 
 [0.141] [0.587] [0.183] [0.383] 
     
Observations 161 49 173 33 
R-squared 0.682 0.979 0.515 0.953 
     
 Panel (d) 
  Dependent variable: log(killed/population) 
Energy (s.d.) 0.355*** 0.125 0.167*** -0.045 
 [0.087] [0.192] [0.052] [0.205] 
     
Observations 204 68 335 54 
R-squared 0.793 0.869 0.534 0.850 
White standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1  
All models include country fixed-effects and year fixed-effects. 
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Table 4. Evidence of long-run adaptation to tropical cyclone climates 
  (1) (2) (3) (4) (5) (6) (7) (8) 
 Dependent variable: log(damage/GDP) Dependent variable: log(killed/population) 
Wind speed (ms-1) 0.203*** 0.185***   0.169*** 0.156***   
 [0.021] [0.021]   [0.012] [0.013]   
Wind speed * climatological wind speed -0.007*** -0.003   -0.006*** -0.005***   
 [0.002] [0.002]   [0.001] [0.001]   
Energy (s.d.)   0.983*** 1.002***   0.732*** 0.786*** 

   [0.094] [0.093]   [0.066] [0.072] 

Energy * climatological energy   -0.269*** -0.255***   -0.188*** -0.187*** 

   [0.066] [0.063]   [0.024] [0.024] 

Wind speed * logGDPpc1970  -0.020**    -0.017***   
  [0.009]    [0.006]   
Energy * logGDPpc1970    -0.068    -0.081** 

    [0.065]    [0.039] 

Climatological wind speed -0.065* -0.096***   0.001 0.005   

 [0.034] [0.035]   [0.019] [0.019]   

Climatological energy   -0.189 -0.143   0.047 0.149 

   [0.221] [0.220]   [0.106] [0.103] 

log(GDP per capita 1970)  -0.283***  -0.411***  -0.217***  -0.347*** 

  [0.093]  [0.082]  [0.065]  [0.057] 

Constant -8.588*** -6.648*** -7.934*** -5.242*** -16.165*** -14.861*** -15.112*** -12.993*** 

 [0.750] [0.988] [0.772] [0.942] [0.441] [0.632] [0.413] [0.568] 
Observations 420 420 420 420 667 660 667 660 
R-squared 0.379 0.422 0.364 0.408 0.355 0.399 0.278 0.329 

Climatological variables are demeaned. White standard errors in brackets. All models include year fixed-effects. *** p<0.01, ** p<0.05, * p<0.1
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Figure 1. Country-by-year observations of wind speed and the standardized energy 
measure: power dissipation density index. 
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  Figure 2. Climatology (mean) of annual maximum wind speed (m/s) achieved by tropical cyclones at each location during 1950-2008. 
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Figure 3. A comparison of log-linear models and log-log models for normalized damages and normalized deaths. Dashed lines are locally-
weighted fits.   
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Figure 4. Prima facie evidence of adaptation to cyclone climates:  OLS fit of 
normalized deaths to actual wind speed for three East-Asian countries. The vertical 
line marks the climatological (mean) wind speed for each country during 1950-2008. 
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Figure 5. Non-parametric estimates of economic damage (top) and deaths (bottom) 
conditional on actual wind speed and either the climatological wind speed (left) or 
income in 1970 (right). 
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Figure 6. Top: Empirical estimate of marginal damages before adaptation and 
marginal damages averted with effort as a function of tropical cyclone climate. Actual 
marginal loss is the space between the two lines. Middle: same, but for deaths. 
Arrows illustrate the response to changes in the climate. Bottom: The distribution of 
tropical cyclone climates for the period 1950-2008 (only non-zero values are shown). 

 

 


