
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KIEL 

Kiel Institute for the World Economy 
ISSN 1862–1155 

Josefine Quast and Maik H. Wolters  

Reliable Real-time 
Output Gap Estimates 
Based on a Modified 
Hamilton Filter 

 

No. 2158  June 2020 

WORKING 
PAPER



KIEL WORKING PAPER NO. 2158| JUNE 2020 

 

 

 

ABSTRACT 

RELIABLE REAL-TIME OUTPUT GAP ESTIMATES 

BASED ON A MODIFIED HAMILTON FILTER 

Josefine Quast and Maik H. Wolters 

We propose a simple modification of Hamilton’s (2018) time series filter that yields reliable and eco-

nomically meaningful real-time output gap estimates. The original filter relies on 8 quarter ahead fore-

cast errors of a simple autoregression of real GDP.  While this approach yields a cyclical component that 

is hardly revised with new incoming data due to the one-sided filtering approach, it does not cover 

typical business cycle frequencies evenly, but mutes short and amplifies medium length cycles. Further, 

as the estimated trend contains high frequency noise, it can hardly be interpreted as potential GDP. A 

simple modification based on the mean of 4 to 12 quarter ahead forecast errors shares the favorable 

real-time properties of the Hamilton filter, but leads to a much better coverage of typical business cycle 

frequencies and a smooth estimated trend. Based on output growth and inflation forecasts and a com-

parison to revised output gap estimates from policy institutions, we find that real-time output gaps 

based on the modified and the original Hamilton filter are economically much more meaningful 

measures of the business cycle than those based on other simple statistical trend-cycle decomposition 

techniques, such as the HP or bandpass filter, and should thus be used preferably. 
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1 Introduction

Ever since Orphanides and van Norden (2002) have provided evidence for the poor real-time per-

formance of commonly used output gap estimation methods, the debate regarding the reliability

of output gap estimates has been vivid. Recently, Edge and Rudd (2016) and Champagne et al.

(2018) have shown that the reliability of Federal Reserve and Bank of Canada staff output gap

estimates has increased since the mid-1990s, while the reliability of purely statistical detrending

procedures, like, for example, the Hodrick-Prescott (HP) filter, continues to be poor.

In a recent article, Hamilton (2018) has proposed a new regression based filter for detrending

time series as an alternative to the HP filter. Hamilton proposes to use the 8 quarter forecast

error of a projection based on an AR(4) model as the cyclical component of a macroeconomic time

series. The filter produces a stationary cycle for a wide range of time series, but suffers much

less from end-of-sample bias than the HP filter and the other trend-cycle decomposition methods

considered by Orphanides and van Norden (2002). Further, the creation of spurious cycles and an

ad hoc choice of the smoothing parameter are avoided (see, e.g., King and Rebelo, 1993; Harvey

and Jaeger, 1993; Cogley and Nason, 1995; Canova, 1998, for problems with the HP filter).

Hamilton applies the filter to US GDP and shows that its cyclical component turns negative

during NBER defined recessions and positive during expansions. Hence, it is potentially not only

a useful detrending method, but also applicable for output gap estimation. This would solve the

long-standing problem of the unreliability of real-time output gap estimates, as the Hamilton filter

is a one-sided filter. Based on spectral density analysis we show, however, that the filter does not

cover typical business cycle frequencies from 6 to 32 quarters evenly. Cycles of lengths between

10 and 20 quarters are substantially amplified relative to longer and shorter cycles. The latter are

muted almost completely. Further, the extracted GDP trend is not smooth. We show that this is

caused by the forecast-based filter that maps high frequency noise, generally not associated with

economically meaningful fluctuations, in GDP 8 quarters ago into current trend estimates. Hence,

the Hamilton filter yields a very noisy measure of potential GDP.

We propose a simple modification that shares the favorable real-time properties of the Hamilton

filter, but leads to a more even coverage of typical business cycle frequencies and a smooth trend.

Rather than using a fixed 8 quarter forecast horizon, we take a simple average of forecast errors

based on forecast horizons ranging from 4 to 12 quarters. Through this, short, medium, and long
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business cycles are covered more evenly. The modified filter further avoids spikes in the cyclical

component of GDP and yields a smooth trend of GDP. Hence, a clear interpretation of the trend

as potential GDP and of the cyclical component as the output gap is possible. The modified filter

is still centered around the 8 quarter horizon proposed by Hamilton and it is similarly easy to

compute as Hamilton’s original approach.

We analyze the reliability of US output gaps computed with the modified Hamilton filter and

compare it to output gaps computed with the original one, the HP, and the bandpass (BP) filter as

examples of commonly used simple statistical trend-cycle decomposition techniques. In particular,

we answer two research questions. First, are the different real-time output gap estimates reliable,

i.e. are subsequent revisions small? Second, are they economically meaningful measures of the

business cycle?

To evaluate the revision properties, we compute output gaps using real-time data vintages and

compare them to those based on revised data. We find that the revisions of output gaps based on

the modified and the original Hamilton filter are small and mainly due to revisions in the underlying

data. There are two reasons for the small revisions. First, the Hamilton filter is primarily a one-

sided filter, though Hamilton recommends to use the whole available sample to estimate the AR(4)

parameters. Second, parameters of univariate AR models for log real GDP are particularly stable

in comparison to parameters of more complicated multivariate models. Contrary to that, HP and

BP filter estimates suffer from large end-point problems due to their two-sided nature and exhibit

revisions as large as the gaps themselves.

Evaluating the meaningfulness of output gap estimates and comparing competing output gap

estimates in this regard is difficult because there is no clear benchmark and the true cycle is un-

known. We analyze the meaningfulness of output gaps from different angles to achieve nevertheless

convincing results.

First, we compare real-time output gap estimates to revised output gap estimates of the Federal

Reserve, the Congressional Budget Office, the IMF, and the OECD. While there is no true cycle

that can be used as a benchmark, important policy institutions should have, at least in retrospect,

expert knowledge on the size and length of past business cycle phases. At the very least such

expert benchmarks can be helpful in measuring business cycle characteristics that matter from a

practitioner’s perspective. We find that the correlations of the ex post institutional output gaps

with the two Hamilton based real-time output gaps are significantly stronger compared to those
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based on the HP and BP filter.

Second, we test whether an output gap estimate has predictive content for output growth and

inflation. For example, if output was below potential, this implies that output growth should in-

crease in the future so that output reverts back to potential. We find significant improvements in

output growth forecasting accuracy when Hamilton-type real-time output gaps are used instead

of HP or BP filtered ones. Further, according to Phillips curve models, output gaps should have

implications for future inflation. Evaluating out-of-sample inflation forecasts by means of a stan-

dard Phillips curve forecasting equation, manifests findings in the literature that no statistically

meaningful distinction can be made between differently filtered gap measures (see, e.g., Edge and

Rudd, 2016; Champagne et al., 2018; Kamber et al., 2018). This reflects the general difficulty of

beating univariate inflation forecast models with output gap based models (Atkeson and Ohanian,

2001; Fisher et al., 2002; Orphanides and van Norden, 2005; Stock and Watson, 2007, 2008; Faust

and Wright, 2013) rather than output gap measurement problems.

In order to check whether our results are specific to US data, we repeat all evaluation exercises

based on data for the UK and Germany. Overall the results are similar to the US case, though the

BP filter does not perform significantly worse than the modified Hamilton filter when considering

their correlation with ex post output gap estimates by policy institutions.

Overall, we find that output gap estimates based on the modified and the original Hamilton

filter have favorable real-time properties and are meaningful measures of the business cycles with

much fewer drawbacks than those based on other simple statistical trend-cycle decomposition

methods. The original Hamilton filter is in general useful for detrending and in particular for

consistent comparisons of theoretical stationary models and nonstationary observed data. The

proposed modification makes the Hamilton filter applicable to output gap measurement, as it leads

to a more even coverage of business cycle frequencies and a smooth trend that can be interpreted

as measuring potential output. Our analysis of the applicability of the Hamilton filter to business

cycle measurement and the proposed modification are of high relevance since many authors do not

use the Hamilton filter merely for producing a stationary time series, but for interpreting trend

and cycle measures economically (see, among others, López-Salido et al., 2017; Van Zandweghe,

2017; Bordo and Siklos, 2018; Danielsson et al., 2018; Richter et al., 2019; Hamilton, 2019; Ahn

and Hamilton, 2020; Richter et al., 2020). According to our example of output gap estimation, it

is advisable in such cases to check whether the filter produces trend and cycle that are in line with
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theoretical concepts and adjust the filter if needed.

2 A Simple Modification of the Hamilton Filter

Hamilton (2018) proposes to use the 8 quarter forecast error of a projection based on an AR(4)

model as the cyclical component of a macroeconomic time series. The 8 quarter horizon is chosen

because cyclical factors, such as whether a recession occurs over the next 2 years rather than large

trend changes, are the primary reason for forecast errors over such a horizon. Hence, to detrend a

macroeconomic time series, yt, the following simple autoregression can be estimated by OLS:

yt = β0 + β1yt−8 + β2yt−9 + β3yt−10 + β4yt−11 + υt. (1)

The cyclical component is given by the residual υ̂t:

υ̂t = yt − β̂0 − β̂1yt−8 − β̂2yt−9 − β̂3yt−10 − β̂4yt−11. (2)

Applied to log quarterly real GDP, it is tempting to interpret υ̂t as an output gap. However,

Hamilton (2018) and Schüler (2018) remark that cycles of 8, 4, 8/3 and 2 quarters are muted and

even completely eliminated for the special case of the difference filter to which the filter reduces

when being applied to a random walk. Hence, typical business cycle frequencies between 6 and 32

quarters (Burns and Mitchell, 1946; Stock and Watson, 1999a) are not covered evenly and especially

short business cycles of around 2 years lengths are eliminated or considerably dampened.

To get an output gap that covers business cycle frequencies from 6 to 32 quarters more evenly,

we propose a simple modification of the Hamilton filter. Rather than using a fixed 8 quarter

horizon, we propose using an equally weighted average of forecast errors based on 4 to 12 quarter

ahead projections to estimate the output gap, ỹt:

ỹt = 1/9
12∑

i=4

υ̂t,i, with (3)

υ̂t,i = yt − β̂0,i − β̂1,iyt−i − β̂2,iyt−i−1 − β̂3,iyt−i−2 − β̂4,iyt−i−3. (4)

In the following, we show based on analyses in the frequency domain that this modification changes

the cyclical properties of the Hamilton filter in a way that makes it applicable for output gap

estimation.
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The spectral density of a covariance stationary process yt at frequency ω ∈ [0, π] is given by

the Fourier transform of the autocovariance function (see, e.g., Canova, 2011, p. 19):

SDy(ω) =
1

2π

∞∑

τ=−∞

ACFy(τ)e
−iωτ , (5)

where i =
√
−1 and ω is measured in radians. Further, a time-invariant filter with absolutely

summable weights can be written as a two-sided moving average:

xt =
∞∑

j=−∞

bjyt−j. (6)

The Power Transfer Function (PTF) |B(ω)|2 = |b(e−iω)|2 measures the squared gain of such a

linear filter, i.e. the variance each frequency ω contributes to the filtered series xt compared to its

variance contribution in the original series yt:

SDx(ω) = |B(ω)|2 SDy(ω). (7)

To filter business cycles, the PTF should take a value of 1 for the business cycle frequencies, i.e.

cycles of 6 to 32 quarters length corresponding to radians of ω = 2π/6 to ω = 2π/32, and a value

of zero for all other frequencies.

Figure 1 shows the PTFs for the original and the modified Hamilton filter. The regression

coefficients of the AR(4) process have been computed based on quarterly US log real GDP data

from 1947Q1 to 2019Q4. The gray shaded areas indicate cycle lengths of 6 to 32 quarters that are

typically associated with business cycle fluctuations. We plot the PTFs in the standard frequency

representation as well as in a version that shows the cycle length in quarters on the horizontal axis

(panel B) to facilitate the reading of the figure. The standard frequency representation might give

the false impression that high frequency fluctuations are particularly important as these take up

more than half of the graph (white area to the right of the gray shaded area), while it gets clear

in the representation showing the cycle length that these are irregular fluctuations, i.e. noise, with

little practical relevance.

It becomes apparent that the original Hamilton filter eliminates business cycles between 6 and 10

quarters almost completely. Hence, short business cycle frequencies are not present in a Hamilton

filtered output gap. On the other hand, medium and long term cycles with a duration longer than

10 and up to 32 quarters are substantially amplified compared to shorter business cycles. Further,
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the Hamilton filter does not only pass through high frequency noise, but even strongly amplifies

many of these high frequency cycles. Panel C shows PTFs of the Hamilton filter for different

forecast horizons. Short horizons emphasize short business cycles and mute long business cycles

in the output gap, while it is the other way around for long horizons. Hence, taking an average

over different horizons leads to a more even coverage of business cycle frequencies as shown by

our proposed modified filter in panels A and B. Further, the proposed modified filter avoids the

amplification of high frequency noise as best seen in panel A.
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Figure 1: PTFs for the Gap Components in Frequency and Time Representation

Based on a standard definition of business cycles, only frequencies between 6 and 32 quarters
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should be present in the output gap. While the modified Hamilton filter is successful in achieving

a more even coverage of these frequencies compared to the original one, both versions pass through

some longer cycles. In light of recent evidence emphasizing the importance of business cycles

longer than 32 quarters (Comin and Gertler, 2006; Beaudry et al., 2020), the decaying PTFs,

where longer lasting cycles also pass through to the output gap with increasing suppression, might

even be considered as advantageous.

Regarding, the muting of short cycles based on the original Hamilton filter, one might argue

based on NBER business cycle dates that this is not of high relevance. There is only one cycle

shorter than 10 quarters in the early 1980s in post WWII data. However, cycles extracted by

the filtering techniques considered here, do not necessarily consist of an expansion and a recession

phase, but could alternatively capture periods of above or below average growth, so that a full

NBER cycle could include several cycles of higher frequency. In the online appendix we show

cycles ranging from 6 to 10 quarters extracted with the BP filter. Based on this measure, one

can observe that the importance of short cycles has decreased over time, but that they are still

important during periods of high GDP volatility like, for example, in the early 1980s or around the

Global Financial Crisis. Hence, accounting for short cycles via the proposed modification of the

Hamilton filter is particularly advantageous for a precise output gap measurement during periods

of high volatility.

Figure 2 compares the output gap and trend estimates for the original and the modified Hamil-

ton filter and reveals that the modified Hamilton filter is more successful in filtering out high

frequency noise. This can be best seen for the estimated trend growth rate (Panel C). For the

original Hamilton filter, the variance of the trend growth rate is similar to that of the growth rate

of GDP itself. Further, the period t growth rate of trend GDP and the period t− 8 GDP growth

rate are very similar (correlation coefficient: 0.94). This is not surprising given that the trend

growth rate is computed as ∆ŷt = β̂1∆yt−8+ β̂2∆yt−9+ β̂3∆yt−10+ β̂4∆yt−11, and the fact that the

estimate of β̂1 is close to 1, while the other AR-coefficients are closer to zero. This implies that

movements in GDP 8 quarters ago have a substantial impact on the current trend estimate of the

original Hamilton filter. The PTFs of the trend component in Figure 3 illustrate why the trend

implied by the modified Hamilton filter is much smoother. While the original Hamilton passes

cycles from 6 to 32 quarters as well as amplified high frequency cycles through to the trend, the

modified filter is merely characterized by long cycles.
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Figure 2: Trend, Output Gap, and Trend Growth: Original and Modified Hamilton Filter
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Figure 3: PTFs for the Trend Components

The high frequency fluctuations of the trend of the original Hamilton filter make its economic

interpretation difficult as the high frequency movements do not reflect fast changes in the productive

capacity in the economy, but are an artifact of the filter being based on a single forecast horizon. By

contrast, the extracted trend based on the modified Hamilton filter is very smooth and its growth

rate varies slowly over time like those of other often used trend measures based, for example, on

the HP or BP filter. Further, the smooth trend of the modified Hamilton filter leads to a smoother

output gap compared to the original Hamilton filter.

Such smoother trend and gap estimates may be desirable for three reasons. First, policy makers

usually associate potential GDP with the medium- to long-term level of sustainable real output

that is driven by low-frequency movements in population growth, labor force participation, and the

capital stock (see, e.g., ECB, 2011; Wolters, 2018; Hodrick, 2020). Consequently, potential output

growth variability is expected to be rather low, too (ECB, 2000). Second, since both, potential

output and the output gap, are used for monetary and fiscal policy making, there is a “pragmatic

desire for ‘smooth’ estimates” (St-Amant and van Norden, 1997) to avoid erratic policy changes.

For example, potential output estimates are essential in the European Union’s fiscal surveillance

framework (Langedijk and Larch, 2011; ECB, 2011). They are deployed to compute the cyclically-

adjusted budget balance (CAB) that is used to assess the Member States’ fiscal policy stances.

Erratic changes in the CAB would make it difficult to come up with appropriate fiscal policies,

in particular given implementation and transmission lags. Third, DSGE model-based estimates of

potential GDP are often highly volatile (Vetlov et al., 2011), but recent research shows that it is

questionable whether such flexible-price based estimates serve as good benchmarks for desirable

characteristics of potential GDP measures. Justiniano and Primiceri (2008) and Coenen et al.
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(2009) show that the high volatility can predominantly be attributed to wage and price mark-up

shocks. Justiniano and Primiceri (2008) show that the mark-up shocks not only lack structural

interpretation (see also Chari et al., 2009), but are also tightly linked to measurement error. Recent

firm-level suggests that price mark-ups move rather slowly (Korinek and Ng, 2018; De Loecker and

Eeckhout, 2020), so that models with more precisely measured mark-up shocks could yield smoother

flex-price potential output estimates than in standard DSGE models.

While the clean economic narrative of Hamilton’s original filter might seem to be obscured by

taking an average of 4 to 12 quarter ahead forecast errors rather than focusing on a single forecast

horizon, this is not the case. As taking an average of forecast errors makes the interpretation

more fuzzy, it has the advantage of substantially improving the treatment of high frequency noise

in the obtained output gap and trend measures. The trend estimate implied by the usage of a

single forecast horizon depends very much on the starting point, i.e. the trend estimates vary from

quarter to quarter due to high frequency noise in GDP at the forecast starting point, whereas the

modified filter excludes this noise by combining different forecast starting points, yielding a more

precise trend and cycle measurement. In this sense, when applied to business cycle measurement,

the economic narrative of the modified filter becomes cleaner as a smoother trend estimate can be

more easily interpreted as potential output and the cycle as an output gap.

Overall, the proposed modified filter achieves a very good real-time reliability due to its one-

sided nature, but covers business cycle frequencies more evenly than the original approach by

Hamilton (2018) and yields a smoother trend estimate. Yet, it is still centered around the 8

quarter horizon proposed by Hamilton and is very simple to compute.

3 Real-time Reliability

We analyze the real-time reliability of different output gaps in the spirit of Orphanides and van

Norden (2002) by computing output gaps based on real-time data vintages and comparing them

to those based on revised data. We obtain data on quarterly real GDP from the Federal Reserve

Bank of Philadelphias’s real-time data set. The first data vintage is from 1965Q4 and the last

data vintage is from 2020Q1. Data predominantly starts in 1947Q1 and ends one quarter before

the publication date of the data vintage, i.e. in 1965Q3 for the first and in 2019Q4 for the last

data vintage. We take logs of real GDP and apply the various filtering techniques to the real GDP
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vintages to get real-time output gap vintages.

We use the last data vintage as our measure of final revised data and define the output gap

revision as the difference between the final revised and the real-time estimate. To make sure that a

comparison of real-time and revised data is not biased by the last data vintages in which real-time

and revised data converge, we follow Orphanides and van Norden (2002) and discard the last 2

years of observations. Hence, our results for the revised gaps are based on the 2020Q1 vintage with

gaps being estimated until 2017Q4. This proceeding is reasonable since most revisions take place

in the first 2 years after the initial publication of GDP (Orphanides and van Norden, 2002; Edge

and Rudd, 2016). Hence, the sample of output gaps that we study starts in 1965Q3 and ends in

2017Q4.

The Hamilton filter is one-sided by definition. For the revised output gap estimates we estimate

the AR-parameters based on the full sample, while for the real-time estimates the AR-parameters

are based on the respective real-time subsamples. For the HP and BP filter we use two-sided

versions for the revised output gap estimates, while we use one-sided versions for the real-time

estimates. Hence, we follow exactly the same approach as in Orphanides and van Norden (2002)

that is also used in other papers on this topic (see, e.g., Cayen and van Norden, 2005; Marcellino and

Musso, 2011; Edge and Rudd, 2016; Kamber et al., 2018). For the one-sided HP filter, we use the

Kalman filter implementation described in, e.g., Stock and Watson (1999b) or Hamilton (2018).

While the literature predominantly follows this approach, Wolf et al. (2020) discuss potential

adjustments to the one-sided HP filter to better align its cyclical properties to those of the two-

sided HP filter. Regarding the BP filter, we use the implementation of Christiano and Fitzgerald

(2003), in which the weights are adjusted according to the sample length as discussed in, e.g., van

Norden (2002), Christiano and Fitzgerald (2003) or Watson (2007).

To further distinguish between data revisions and revisions due to the filter-induced structure,

we compute quasi real-time output gap estimates. That is we estimate one-sided output gap

measures as in the real-time estimation, but based on the final revised data. By that we are able

to isolate the impact of pure data revisions—defined as the quasi real-time output gap minus the

real-time output gap—as the estimates of the real-time and the quasi real-time series cover the

exact same time periods.

Figure 4 shows that revisions to output gaps computed with the original and the modified

Hamilton filter are small relative to the amplitude of the output gap and are mainly caused by
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data revisions as also shown by Jönsson (2019) for the original Hamilton filter. By contrast, final

and real-time output gap estimates of the HP and BP filter markedly differ from each other.

Revisions for these are of the same sizes as the output gaps themselves confirming the results by

Orphanides and van Norden (2002) for an updated sample. The revisions for the HP and BP filter

are to a large extend filter-induced revisions, while data revisions only play a minor role.

Table 1 presents summary statistics for the output gap revisions. The upper part of the table

shows statistics on total revisions. The Hamilton filtered output gap has the smallest mean error

with a value of 0.03 and the BP filter the largest one with a value of 0.29, which is still not very

large given that the BP filtered output gap fluctuates between ±4. The standard deviation is

smallest for the modified Hamilton filter taking a value of 0.84 and almost twice as large for the

HP filter with the original Hamilton and the BP filter being in between. However, this value is not

very informative without comparing it to the standard deviation of the output gap because the

amplitudes of the two versions of the Hamilton filtered output gap are quite a bit larger than the

amplitudes of the other two output gaps. Such a comparison is given by the noise-to-signal ratios.

The first measure of the noise-to-signal ratio compares the standard deviation of the revision to

the standard deviation of the final revised output gap estimate. This value is only 0.29 for the two

versions of the Hamilton filtered output gap, while it is much larger for the BP and HP filtered

output gaps with values of 0.59 and almost 0.97. In principle, a noise-to-signal ratio based on

dividing the RMSE of the output gap revision by the standard deviation of the final revised output

gap is more informative because it reflects biases in the real-time output gaps. However, the noise-

to-signal ratios based on both measures are almost the same as the biases of all four real-time

output gap estimates are small. Further, we report the differences between the noise-to-signal

ratios relative to the results obtained for the modified Hamilton filter in columns 6 and 8. To

analyze whether they are statistically significant, we follow Edge and Rudd (2016) and compute

empirical distributions of the noise-to-signal ratios based on a naive block bootstrapping procedure

with replacement. The HP and BP filter based noise-to-signal ratios are significantly larger than

the one of the modified Hamilton filter which is almost identical to the one of the original Hamilton

filter. Finally, we also report the fraction of observations in which the final revised and the real-time

output gap estimates have opposite signs. This is the case for only 5% and 6% of observations for

the modified and the original Hamilton filter, respectively, but for 20% and 31% of observations

for the BP and HP filtered output gaps, respectively.
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Figure 4: Output Gaps and Revisions
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Table 1: Output Gap Revision Statistics

Noise-Signal Ratios

Mean SD RMSE SD Diff RMSE Diff Opposite

Sign

Total Revisions

Hamilton -0.03 0.98 0.97 0.29 -0.00 0.29 0.00 0.06

Modified -0.05 0.84 0.84 0.29 -- 0.29 - 0.05

HP -0.17 1.55 1.56 0.97 -0.68∗∗∗ 0.97 0.68∗∗∗ 0.31

BP -0.29 0.91 0.96 0.59 -0.30∗∗∗ 0.62 0.33∗∗∗ 0.20

Data Revisions

Hamilton -0.08 1.04 1.05 0.31 -0.00 0.31 -0.00 0.06

Modified -0.07 0.90 0.90 0.31 -- 0.31 -- 0.07

HP -0.01 0.58 0.58 0.36 -0.05 0.36 -0.05 0.04

BP -0.05 0.33 0.33 0.21 -0.10∗∗ 0.21 -0.10∗∗ 0.08

Notes: *, **, and *** denote significance on the 10, 5, and 1% significance level based on a naive block bootstrapping procedure with

5000 replications and a block size of 4. Diff refers to differences in the noise-to-signal ratios in the previous column relative to the

one of the modified Hamilton filter.

The lower part of the table shows statistics on the share of the revisions that is caused by data

revisions. This share is computed by subtracting the real-time output gap estimates from the quasi

real-time output gap estimates. For the two versions of the Hamilton filter, the standard deviations

and the noise-to-signal ratios based on data revisions and on total revisions are very similar. This

reflects that almost all revisions of these output gap measures are due to data revisions. For the HP

and BP filter, the standard deviations, RMSEs, and the two noise-to-signal ratio measures are much

smaller than those for total revisions, reflecting that data revisions are relatively unimportant. The

differences in the noise-to-signal ratios associated with the data revisions are insignificant or even

in favor of the BP based measure. Thus, the significantly higher presence of noise in the total

revision series of the HP and BP filter compared to the modified Hamilton filter in the upper part

of the table is merely due to the different filtering procedures rather than due to data revisions.

Further, there are relatively few sign switches between the real-time and the quasi real-time output

gap estimates for all four methods.

Overall, we find that the output gaps based on the modified and the original Hamilton filter are
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Figure 5: Recursive Estimates of the AR(4) Parameters of the Original Hamilton Filter

by far the most reliable real-time output gap measures. It is also worth noting that the BP filter

performs better than the popular HP filter that shows the least reliable performance among the

four output gap measures. A likely cause for the large difference between the BP and HP filter is

that the Christiano-Fitzgerald (CF) version of the BP filter adjusts weights based on the number

of available observations, while those of the HP filter are independent of the sample length. As

noted in van Norden (2002), the optimal end-of-sample one-sided BP filter provides lower bounds

on measurement error of current trends and cycles estimated with univariate filters. This is in line

with our findings that the CF version of the BP filter outperforms the HP filter in terms of being

less prone to data revisions.

The reason for the high reliability of the two Hamilton filtered output gaps with respect to

revisions is that they rely on one-sided filters. Revisions can occur only for two reasons: Data

revisions and changes in the estimated parameters of the AR(4) processes. As discussed above,

data revisions only lead to small revisions of the output gap estimates. Regarding the estimated

AR(4) parameters, Figure 5 shows how they change over time via the recursive estimation procedure

and how they converge to the full sample estimates for the original Hamilton filter. While there

are some changes, overall the parameters are rather stable. When looking at the sum of the AR-

coefficients, there are almost no changes at all. GDP follows a unit-root or near unit-root process

for all subsamples. Regarding the estimated constant, there are some changes until the subsample

ending in 1985. Afterwards, the estimates decrease somewhat reflecting the growth slowdown in

the 1980s.

For the remainder of the analysis, we solely use the one-sided real-time output gap estimates
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based on the different filtering techniques as they reflect the available and relevant information

set. Revised and quasi real-time gap measures were only estimated for the purpose of assessing the

real-time reliability.

4 Economic Meaningfulness of Output Gap Estimates

While there is evidence for a superior real-time performance of the two versions of the Hamilton

filtered output gap compared to the HP and BP filtered ones, it is yet unclear whether the Hamilton

filtered gaps are economically meaningful. Stationarity is a first basic requirement. Output gap

estimates based on the Hamilton filter are stationary as long as the original time series is integrated

of order 4 or less (Hamilton, 2018). This is clearly the case for real GDP. Further, at least the

modified Hamilton filter yields a smooth trend estimate and an output gap that covers the relevant

business cycle frequencies relatively evenly.

A second requirement for a meaningful output gap is that the method used is able to successfully

disentangle trend and cycle. Hamilton’s method is able to do so to the extent that no large

trend changes occur between periods t− 8 and t. Hamilton (2018) justifies the exclusion of trend

changes over a 2 year horizon arguing that the primary reason for forecast errors at this horizon are

transitory factors such as whether a recession occurs and the timing of recoveries. Other output gap

estimation methods are based on a similar a priori belief that the cyclical is much larger than the

volatility in the second difference of the trend component. For example, the standard smoothing

parameter of 1600 of the HP filter is based on the assumption that the variance in the cyclical

component’s innovations is σ2
c = 5, while the one in the second difference of the trend component

is σ2
v = 0.125 (see, e.g., Canova, 2011, pp. 83-84; Hamilton, 2018). A statistical formalization of

the choice of λ leads to a value of 0.245 for US quarterly GDP (Hamilton, 2018). Similarly, when

using the Beveridge-Nelson (BN) decomposition, only a version with a strong prior belief that the

volatility of the cyclical component is much higher than the one of the trend component leads to

sensible output gap estimates, while changes in the trend component dominate without imposing

such a prior belief (Kamber et al., 2018). Hence, the a priori choice that over a 2 year horizon

trend changes are much less important than cyclical fluctuations is in line with other output gap

estimation methods and the modified version of the Hamilton filter accounts for trend changes to

a certain extent already after 1 rather than 2 years.
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After all, the appropriateness of a filtering technique depends on the researcher’s objective.

For output gap estimations, the objective is often to match important historical business cycle

episodes. Computing correlations of the quarter-on-quarter change of the different real-time output

gap measures with a dummy variable that takes the value of 1 during NBER defined expansions

and 0 during NBER defined recessions, yields a correlation of 0.45 for the original Hamilton, 0.55

for the modified Hamilton, 0.41 for the HP and 0.47 for the BP filtered output gaps. Overall,

the analysis yields first indications that the modified Hamilton filtered output gap is economically

meaningful. More systematic evaluations are provided below.

4.1 Correlation with Output Gaps from Policy Institutions

First, we compare real-time output gap estimates to revised US output gap estimates of the Fed-

eral Reserve (Fed), the Congressional Budget Office (CBO), the IMF, and the OECD. Revised

output gap estimates of policy institutions should be useful benchmarks for three reasons. First,

they entail economic considerations regarding past courses of the US business cycle that include a

substantial amount of economic expertise rather than being based only on statistical models. Sec-

ond, the assessments of policy institutions should capture output gap dynamics that are deemed

important from a practitioner’s perspective. Finally, recent papers show that output gaps from

policy institutions have been more reliable than those based on statistical methods over the last

20 years (see Edge and Rudd, 2016, for the Fed’s output gap and Champagne et al., 2018, for the

Bank of Canada’s output gap).

For all four policy institutions, models or statistical approaches build the foundation for the

potential output estimates (see, e.g., Coibion et al., 2018, for a detailed overview on how the

institutions estimate potential output). Yet, all institutions combine these with a large amount of

judgment. The Fed’s estimates rely on a judgmental pooling of results from different statistical

and structural methods and models (Mishkin, 2007; Edge and Rudd, 2016). The CBO focuses

on a sectoral production function approach where “a substantial degree of judgment” is applied,

for example, to the projections of potential TFP, potential output of the household sector, or

federal employment (Shackleton, 2018). The OECD also uses a production function approach,

but assumptions regarding the future NAIRU, working age population, rates of participation, and

productivity or capital and wage shares are implemented on a judgmental basis (Beffy et al.,

2006). Lastly, the IMF’s production function framework (De Masi, 1997) is also augmented. Here

18



the judgment of desk economists and mission chiefs plays a key role in evaluating a country’s

potential output (De Resende, 2014; Rosnick, 2016).

There are some limitations regarding available samples and frequencies of output gap estimates

from policy institutions. While for the Fed and the CBO quarterly data is available, samples for

the IMF and the OECD rely on annual data. Further, the Fed data ends in 2013Q4 as it is based

on the Greenbook which is made available to the public with a lag of about 5 years. Data for the

Fed and the CBO is available from the start of our real-time output gap sample in 1965Q3, while

data for the IMF (OECD) starts in 1980 (1985).

Table 2 shows correlations for the quarterly output gap series covering the period 1965Q3 until

2013Q4 on the left and for the annual series for data from 1985 to 2013 on the right. The results

show that the two Hamilton filtered real-time output gaps are highly correlated with all revised

institutional output gaps with correlation coefficients ranging from 0.57 to 0.83. The differences in

the correlation coefficients between the original and the modified Hamilton filter are not statistically

significant so that both reflect ex post expert evaluations similarly well. The HP and BP filtered

real-time output gap correlations with the policy institutions’ gaps are significantly lower ranging

from 0.11 to 0.55, with those of the HP filter being particularly low.

Due to the similarity of Hamilton-type real-time and full sample output gap estimates, we

unsurprisingly find a similar correlation coefficient between the original Hamilton filtered output

gap and the CBO gap in our real-time setting as Hodrick (2020) does in his full-sample setting.

Adopting the latter, we also find a similarly high correlation coefficient between the two-sided HP

filtered output gap and the one of the CBO as reported in Hodrick (2020). However, this perfectly

showcases the unreliability issues associated with the HP filter. Our results indicate that these

correlations deteriorate as soon as one refrains from using full sample information and applies the

one-sided HP filter in a real-time setting.

Interestingly, for all four statistical output gap measures the correlations are higher with the

output gaps of the Fed and the CBO—the two US institutions—than with the IMF and OECD—

the two international institutions. Overall, these results imply that the real-time Hamilton filtered

output gaps are able to reflect the ex post expert evaluation of the US business cycle to a consid-

erable degree in real time, while the BP and in particular the HP filter do this to a much smaller

extent.
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Table 2: Correlations between Statistical Real-Time and Expert Ex-Post Output Gap Estimates

Quarterly Data (65Q3-13Q4) Annual Data (1985-2013)

Fed Diff CBO Diff Fed Diff CBO Diff IMF Diff OECD Diff

Hamilton 0.57 -0.05 0.66 -0.05 0.78 -0.05 0.78 0.04 0.64 -0.04 0.68 -0.05

Modified 0.62 —– 0.71 —– 0.83 —– 0.82 —– 0.68 —– 0.73 —–

HP 0.20 -0.42*** 0.33 -0.38*** 0.31 -0.52*** 0.36 -0.46*** 0.28 -0.40** 0.11 -0.62***

BP 0.46 -0.16** 0.55 -0.16*** 0.50 -0.33** 0.51 -0.31** 0.46 -0.22 0.36 -0.37**

Notes: Diff reports the respective difference in the correlation coefficients with respect to the modified Hamilton

filtered statistical real-time gap. **, and *** denote significant differences on the 5, and 1% significance level based

on Fisher’s z transformation (Fisher, 1921).

4.2 Forecasting Performance: Output Growth

The previous analysis shows that the assessment of the meaningfulness of output gap estimates is

to some extent subjective depending on the researcher’s objective regarding what the output gap

should measure. However, with the assessment of the predictive content of output gap estimates

also a more objective criterion is available.

Nelson (2008) proposed the evaluation of competing output gap measures via their output

growth forecasting performance. If an output gap was negative, one would expect above average

output growth rates in the future so that output reverts back to trend. Conversely, if the output gap

was positive, output growth should be below average some time in the future. We use a standard

forecast equation in which output growth h periods ahead is predicted using the real-time output

gap vintage:

yt+h − yt = α + βĉt + εt+h|t, (8)

where y denotes log real GDP, ĉ the estimated real-time output gap vintage, and εt+h|t the forecast

error. The equation is estimated with OLS. The initial sample runs from 1965Q3 to 1975Q2, the

sample is recursively expanded quarter-by-quarter and forecasts are computed for horizons 1 to 12.

Based on the intuition developed above, we expect β < 0 at some horizon, essentially indicating

the ability of the output gap to predict trend-reverting tendencies of the output growth series.

Table 3 reports RMSEs for the original Hamilton and the modified Hamilton filtered output

gaps relative to the HP and BP filtered ones as well as to one another. In the last column we
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Table 3: Output Growth Forecast Evaluation Based on Statistical Real-Time Output Gaps

Relative RMSE

Horizon Ham/HP Mod/HP Ham/BP Mod/BP Mod/Ham BP/HP

1 0.91*** 0.91*** 0.98* 0.97* 0.99 0.94***

2 0.85*** 0.83*** 0.94** 0.93** 0.99 0.90***

3 0.79*** 0.78*** 0.91*** 0.89*** 0.98* 0.87***

4 0.76*** 0.75*** 0.89*** 0.87*** 0.98* 0.86***

5 0.75*** 0.74*** 0.88*** 0.87*** 0.98* 0.85***

6 0.76*** 0.74*** 0.89*** 0.87*** 0.98* 0.85***

7 0.77*** 0.76*** 0.90** 0.88** 0.98** 0.86***

8 0.79*** 0.77*** 0.90** 0.89** 0.98** 0.87***

9 0.80*** 0.79*** 0.90** 0.89** 0.98** 0.88***

10 0.82*** 0.80*** 0.91** 0.89** 0.98** 0.90***

11 0.84*** 0.82*** 0.91** 0.89** 0.98** 0.92**

12 0.85*** 0.84*** 0.91** 0.90** 0.98** 0.93**

Notes: *, **, and *** denote significance on the 10, 5, and 1% level based on a two-sided Diebold-Mariano (1995) test.

additionally report the RMSEs for the BP relative to the HP filtered one. The relative RMSEs

reveal that output growth forecasts based on the two Hamilton-type filtered real-time output gap

measures are significantly more accurate compared to using an HP or BP filtered gap measure.

These accuracy gains amount up to 26% (13%) for the modified Hamilton filter relative to the HP

(BP) filtered gap. We also find slightly more accurate forecasts based on the modified compared

to the original Hamilton filter. However, compared to the gains obtained with respect to the HP

or BP filter, they remain extremely small.

Except for the first horizon of the Hamilton filtered gaps, where the slope coefficient is zero,

all slope coefficients have negative signs. This indicates that all four output gap measures predict

trend-reverting output growth rates. They are significantly different from zero from horizon 4

onward for the two Hamilton and from horizon 1 onward for the HP and BP filtered output gaps.

When we extend equation (8) and additionally control for the first difference of the output gap to

account for changes in the level and the dynamics of the gap separately as in Nelson (2008), we

find very similar results.

Overall, the results from this exercise show that output gaps estimated with the original or
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the modified Hamilton filter increase output growth forecasting accuracy relative to using output

gaps estimated with the HP or BP filter. This indicates that they might be comparatively more

informative about the stance of the business cycle.

4.3 Forecasting Performance: Inflation

Since theory predicts that output gap estimates should be useful predictors for forecasting inflation,

we also consider a Phillips curve type forecasting model to evaluate the competing output gap

measures. We follow Stock and Watson (1999b), Clark and McCracken (2006), Stock and Watson

(2008), and Kamber et al. (2018) in specifying an autoregressive distributed lag (ADL) Phillips

Curve forecasting equation:

πt+h − πt = α +

p∑

i=0

βi∆πt−i +

q∑

i=0

γiĉt−i + εt+h|t, (9)

where πt denotes US PCE inflation, ĉt the recursively estimated real-time output gap vintage,

and εt+h|t the forecast error. While our baseline specification is based on changes in inflation, i.e.

imposes a unit root in inflation, forecasting results are very similar when we estimate models in

terms of inflation levels or specifications that include a relative import price inflation term. We

use final revised data for inflation. The lag lengths p for inflation and q for the output gap are

determined based on the entire sample using the SIC. We consider p ∈ [0, 12] and q ∈ [0, 12]. In the

recursive forecast evaluation, we assume that the optimal lag order is known a priori. As above, the

initial sample runs from 1965Q3 to 1975Q2, the sample is recursively expanded quarter-by-quarter,

and forecasts are computed for horizons 1 to 12. For comparison, we also compute results for a

model that omits the output gap, but is otherwise identical to equation (9).

Table 4 shows root mean squared inflation forecast errors based on the two Hamilton filtered

output gaps relative to those based on the HP, the BP filter, one another, and those based on the

specification without output gap. The differences between the forecasting models are marginal and

mostly insignificant. Further, models that condition on an output gap measure do not significantly

improve upon a univariate inflation forecast. While these results unfortunately do not help in

evaluating competing output gap measures, they are fully in line with the literature. Among

others, Stock and Watson (2007, 2008), Faust and Wright (2013), Edge and Rudd (2016), and

Kamber et al. (2018) find that it is generally difficult to beat univariate inflation forecast models

through conditioning on output gaps. We find very similar results when conditioning on final
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Table 4: Inflation Forecast Evaluation Based on Statistical Real-Time Output Gaps

Relative RMSE

Horizon Ham/HP Mod/HP Ham/BP Mod/BP Mod/Ham Ham/No Gap Mod/No Gap

1 0.92*** 0.99*** 0.87*** 0.93* 1.07*** 1.02* 1.10***

2 1.02* 1.01* 0.88*** 0.87*** 0.98* 0.91** 0.89**

3 0.98 0.98* 0.98 0.98 1.00 1.01 1.01

4 1.02 1.02 1.02 1.02 1.00 1.00 1.00

5 1.03*** 1.02** 1.03 1.01 0.98 1.01 1.00

6 1.01 1.01 1.04 1.04 1.00 0.96 0.97

7 1.01 1.01 1.04** 1.04** 1.00 0.96 0.97

8 1.02 1.01 1.05** 1.05** 1.00 0.96 0.96

9 1.01 1.01 1.03 1.03 1.00 0.96 0.96

10 0.99* 1.01 1.04** 1.06*** 1.02* 0.95 0.97

11 1.00** 1.01 1.05** 1.06*** 1.02** 0.96 0.98

12 1.00 1.00 1.01 1.01 1.00 0.96 0.96

Notes: *, **, and *** denote significance on the 10, 5, and 1% level based on a two-sided Diebold-Mariano (1995) test.

revised output gaps. Hence, these results are due to the general decline in the forecastability of

inflation in recent decades (Stock and Watson, 2007, 2008) rather than to real-time output gap

measurement problems.

5 Alternative Specifications and Robustness

Alternative Forecast Horizon Ranges The modified Hamilton filter is based on a simple

mean of forecast errors of horizons from 4 to 12 quarters ahead. This specification is close to

Hamilton’s original proposal because it is centered around the 8 quarter horizon proposed by

Hamilton (2018). To test the sensitivity of our results, we also compute results for the different

output gap evaluations for other forecast horizon ranges. Specifically, we consider tighter (6 − 10

quarters) and wider (2 − 14) bands of forecast horizons. While these two specifications are still

centered around the 8 quarter horizon, we also compute results for tight and wide bands centered

around h = 6 (4− 8; 2− 10) and h = 10 (8− 12; 6− 14).

We find that real-time output gaps based on all these different specifications have a much
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higher correlation with NBER dated recessions and revised output gaps from policy institutions

than real-time output gaps based on the HP or the BP filter. Among the different forecast horizon

specifications, it turns out that including longer forecast horizons compared to the baseline—either

via increasing the range of considered forecast horizons or by centering around a horizon of 10

instead of 8 quarters ahead—increases correlations, while tighter bands or centering around a 6

quarter ahead forecast horizons decreases correlations. However, when looking at the results of

the spectral density analysis, it becomes clear that including longer forecast horizons leads to a

less even coverage of typical business cycle frequencies. Short cycles are muted and cycles that

are longer than 8 years, which is typically considered as the upper bound for business cycles,

are amplified. Hence, if one thinks that policy institutions have the best assessment of which

dynamics should be taken into account, then including higher horizons might be preferable. This

is in line with the observation of Beaudry et al. (2020) that the classical range of business cycles

up to a length of 8 years might not be sufficient and that longer cycles should be included in

the definition of business cycles. If one wants to stick to a standard definition of business cycle

frequencies instead, then our baseline specification is preferable. With respect to the output growth

forecasting exercise, differences across specifications are very small. Finally, for inflation forecasts,

the 4-8 band, centered around a forecast horizon of 6 quarters, yields small accuracy gains compared

to the baseline range, though differences are only significant for 1 quarter ahead inflation forecasts.

Based on these exercises, a trade-off gets apparent: Including longer horizons helps the real-time

output gap measure to match NBER recessions and the revised expert output gaps better, while

including shorter horizons increases inflation forecasting accuracy. Overall, these results show that

a range centered around a forecast horizon of 8 quarters seems to be a good choice when considering

the results across all the different evaluation exercises.

Optimized Weights of the Modified Hamilton Filter The modified Hamilton filter is based

on an unweighted average of forecast errors of different horizons. While this makes the computation

particularly simple and transparent, we also analyze the extent to which the output gap measure-

ment can be improved by choosing an optimized weighting scheme instead. First, we choose weights

in order to achieve a PTF that is as close as possible to the ideal PTF that takes a value of 1 for

cycle lengths from 6 to 32 quarters and a value of zero otherwise. Second, we choose weights in

order to get as close as possible to a PTF that takes the average value of the original Hamilton
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filter’s PTF over the cycles from 6 to 32 quarters length and zero otherwise. This average is close

to 1.7, i.e. almost double the size of an ideal PTF reflecting the higher amplitude of output gaps

based on Hamilton-type filters. For both exercises we use the full sample for the optimization of

weights, consider forecasting horizons between 4 and 12 quarters, and a quadratic loss function.

We restrict the weights across the 9 considered horizons to be positive, to sum to 1, and cut off

the optimization after a maximum cycle length of 128 quarters. If a shorter (64 quarters) or longer

(256 quarters) cutoff point is chosen, we obtain the same results up to rounding precision.

In both optimized versions, only 3 of the 9 horizons have weights that are larger than zero.

These are horizons 4 (weight: 0.39), 6 (0.43), and 9 (0.18) for fitting the ideal PTF and 4 (0.33),

6 (0.42), and 9 (0.25) for fitting the average PTF of the business cycle frequencies based on the

original Hamilton filter. Hence, the results indicate that it is sensible to include shorter as well as

longer horizons. Above we found that including higher horizons increases correlations with revised

expert output gaps. The higher weights on short compared to long horizons in the optimization

exercise confirm, however, that this comes at the cost of deviating from standard definitions of

business cycle frequencies by giving too much weight to medium- to long-run cycles.

Figure 6 shows the PTFs for Hamilton’s original filter, the modified one, and the filters with

optimized weights. It gets apparent that the cyclical properties of our simple rule-of-thumb modifi-

cation are most similar to the one where we optimize weights to fit the average PTF of the original

Hamilton filter for cycles between 6 and 32 quarters.

In all evaluation exercises, the results are very similar for the versions with optimized weights

(for simplicity determined based on the full sample) and the one based on a simple average of

forecast errors of different horizons. The correlations of our baseline modified Hamilton filter with
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the different revised expert gaps are higher than those of the versions with optimized weights,

though the differences are significant only in some cases. Regarding output growth forecasting

accuracy, differences between the original, the baseline modified, and optimized modified Hamilton

filters are marginal and insignificant. Lastly, differences in inflation forecasts remain small and

inconclusive, even if optimized weights are considered.

Forecast-Augmented Output Gap Estimates One possibility to mitigate the end-of-sample

distortions of two-sided filters is to use forecast-augmented data series (see, e.g., Kaiser and Mar-

avall, 1999; Mise et al., 2005; Garratt et al., 2008; Kaiser and Maravall, 2012). To evaluate the

implications towards our results, we augment each log real GDP vintage with 4 quarters of fore-

casts based on a univariate AR(4) process as in Stock and Watson (2007, 2008). The forecast-

augmentation has only minor implications for the Hamilton-type filters as the forecasts have only

a small effect on the estimated AR-parameters. Apart from that, they do not affect the output

gap estimates due to the one-sided filtering approach. Regarding the HP filter, we find in line

with Garratt et al. (2008) that the forecast augmentation reduces uncertainty around HP filtered

end-point estimates distinctively. The noise-to-signal ratio decreases by 27%. Notably, for the BP

filter we do not find such a large effect as the results based on the forecast augmented output

gap are very similar to the baseline results. Christiano and Fitzgerald (2003) show that the BP

filter’s end-of-sample bias vanishes only slowly as more data becomes available. Weights of the

CF version of the BP filter are based on the available sample, with end-of-sample weights being

chosen optimally, so that appending forecasts to the sample hardly reduces measurement error.

Weights of the HP filter are chosen independent of the available sample, so that end-of-sample

measurement error is higher. The HP filter’s end-of-sample bias declines considerably within the

first year. Hence when forecast-augmented series are used, the HP filter results align with those

obtained from using the BP filter. Yet, there is still significantly more noise present in the real-time

HP and BP filter based output gaps compared to the Hamilton-type ones. The expert output gap

based evaluation shows a significantly better performance of the Hamilton filtered real-time gaps

compared to the HP and BP filtered ones. In the output growth forecast exercise, the two Hamilton

filtered real-time output gaps still show distinctively greater forecast accuracy compared to the HP

filtered gap, though forecasts based on the HP filter have improved via the forecast augmentation

and are of similar accuracy as those of the BP filter. The results of the inflation forecast exercise
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are as inconclusive as before.

Breaks in Trend Growth Both, Hamilton’s original as well as our proposed modified procedure,

rely on constant coefficients. To study whether accounting for structural breaks can improve the

real-time output gap measures, we follow the literature and account for two possible structural

changes. While Orphanides and van Norden (2002) and Perron and Wada (2009, 2016) provide

evidence for a structural change in 1973Q1 associated with the productivity slowdown during the

1970s, Kamber et al. (2018) find evidence for a break in the long-run growth rate in 2006Q1. Since

structural changes are especially hard to detect at the end of the sample, we follow Orphanides

and van Norden (2002) and assume that the respective potential change is reflected in vintages

starting 4 years after occurrence.

We then re-estimate the Hamilton-filtered output gaps for each data vintage accounting for the

detected structural breaks in the constant. Figure 7 shows the unadjusted and adjusted real-time

output gap estimates based on the modified Hamilton filter. Overall, the break-point adjusted

output gap is higher than the baseline output gap in the aftermath of the Great Recession. Apart

from that, the dynamics are the same. The reason is that the magnitude of the estimated breaks—

and in particular the one in the 1970s—is relatively small compared to the unconditional variance

of GDP growth, so that the estimated autoregressive coefficients are little impacted by allowing

for breaks. Results are very similar for the original Hamilton filter. Therefore, the original and

modified Hamilton filtered output gaps are rather robust to accounting for structural change in

trend growth.

Comparison to the Beveridge-Nelson decomposition In addition to the literature on the

real-time reliability of output gaps, the paper by Kamber et al. (2018) is closely related to our
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work. They use a modified BN decomposition to estimate output gaps. The method is related

to the Hamilton filter as it also uses an autoregression to estimate the trend. The approach of

Kamber et al. (2018) is on the one hand less ad hoc because they estimate the trend based on

long-horizon conditional expectations rather than imposing a fixed horizon of 8 quarters. Further,

the long-horizon conditional expectations are measured using data until period t rather than t− 8,

so that trend changes between t−8 and t are accounted for. By contrast, when using the Hamilton

filter one implicitly assumes that there are no relevant trend changes during this period. On the

other hand, the computation of the Hamilton filter and also the modified version proposed in this

paper are much simpler and more intuitive. The standard BN decomposition yields an output

gap that is completely at odds with standard business cycle facts and therefore an algorithm with

several steps has to be run to get the modified BN decomposition that makes sure that most

GDP dynamics are attributed to the cycle rather than trend changes. For the Hamilton filter the

computation of forecast errors based on simple autoregressions is instead sufficient. See Hodrick

(2020) for further discussions of similarities and differences between Hamilton (2018) and the BN

decomposition (Beveridge and Nelson, 1981).

The BN output gap proposed by Kamber et al. (2018) and Hamilton-type output gaps are

highly correlated ex post and in real time (with correlation coefficients of around 0.85). Hence, it

is not surprising that the different output gap evaluation exercises yield overall similar results for

the real-time BN and Hamilton filtered output gaps. In the expert output gap evaluation exercise,

correlations are predominantly higher when the modified Hamilton filtered gap is used. Yet, this

is only significant at the 10% level for the quarterly correlations with the CBO gap. In the output

growth forecasting exercise, the results are very similar without significant differences over the first

four forecasting horizons. From horizon 5 onward, both Hamilton-type gaps provide significantly

more accurate forecasts compared to the BN filtered gap. In the inflation forecasting exercise, no

differences between the gap measures can be detected as we obtain almost the same results for the

Hamilton and BN filtered gaps.

The Cases of Germany and the United Kingdom In order to check whether the results

are specific to the US, we compile similar quarterly vintage data sets on real GDP for Germany

and the UK and repeat all output gap evaluation exercises. We provide a short description of

the results in the following and refer to the online appendix for details. Real-time data vintages
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Figure 8: Estimated Output Gaps for Germany and the UK

for Germany are obtained from the Deutsche Bundesbank’s real-time dataset, while they come

from the Bank of England for the UK. Vintages for Germany (the UK) are available from 1971Q4

(1976Q1) onward and contain quarterly values starting from 1962Q1 (1955Q1). For Germany, we

splice level adjusted data for West Germany before the German reunification with data for whole

Germany afterwards. We use UK data from 1985Q1 onward for all evaluation exercises as all ex

post output gap estimates from policy institutions are available since then. For Germany we use

data from 1991Q1 onward, i.e. post-reunification data. As before, we choose the 2020Q1 vintage

as our final series and disregard the last 2 years. Thus our sample ends in 2017Q4. Figure 8 shows

the real-time, quasi real-time, and revised output gap estimates as obtained from the modified

Hamilton filter. Gray shades show recessions based on the Bry-Boschan business cycle dating

algorithm (Bry and Boschan, 1971; Harding and Pagan, 2002).

All three estimated output gaps are very similar. Since the quasi real-time and revised series

are almost identical, it gets apparent that the remaining revisions are driven by data revisions.

First, we find significantly less noise left in the Hamilton-type real-time gap estimates compared

to those obtained from the HP or BP filter. Also, similarly to the US case, we find that there are

relatively fewer sign switches among the real-time and the revised measures. Hence, Hamilton-

type output gap measures for Germany and the UK are reliable. Second, we find that the modified

Hamilton filter covers standard business cycle frequencies more evenly than the original Hamilton

filter. Indeed, the results are very similar to those in Figure 1 for the US. Third, we again find that

our modification yields much smoother trend growth estimates compared to Hamilton’s originally

proposed approach, facilitating the interpretation of the obtained trend as potential output and
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Table 5: Correlations between Statistical Real-Time and Expert Ex Post Output Gap Estimates

Germany (1991-2019) UK (1985-2019)

EC Diff IMF Diff OECD Diff EC Diff IMF Diff OECD Diff

Hamilton 0.74 -0.04 0.77 -0.04 0.72 -0.05 0.51 -0.02 0.56 -0.03 0.45 -0.03

Modified 0.79 —– 0.81 —– 0.76 —– 0.53 —– 0.59 —– 0.48 —–

HP 0.45 -0.34** 0.57 -0.24* 0.34 -0.43** 0.12 -0.42* 0.10 -0.49** 0.00 -0.48**

BP 0.79 -0.10 0.72 -0.09 0.63 -0.13 0.25 -0.29 0.22 -0.37* 0.13 -0.35

Notes: Diff reports the difference in the correlation coefficients with respect to the modified Hamilton filtered

statistical real-time gap. *, **, and *** denote significant differences on the 10, 5, and 1% level based on Fisher’s z

transformation (Fisher, 1921).

the cycle as output gap.

To evaluate the economic content of the real-time output gaps for Germany and the UK, we

first compute their correlations with revised output gaps of the European Commission (EC), the

IMF, and the OECD published as of autumn 2019. Since the expert gaps are only available at

the annual frequency, we compute annual averages of the quarterly real-time output gaps. For

Germany (UK), all three expert gaps are jointly available from 1991 (1985) onward. Table 5 shows

the results.

Similar to the US case, Hamilton based output gaps are highly correlated with the German and

UK ex post expert output gaps. Again, differences between the original and the modified Hamilton

filter are not statistically significant. While only one correlation (UK, IMF) is significantly smaller

when using the BP filtered real-time gap compared to the modified Hamilton filter, all correlations

between the HP filtered real-time and the ex post expert output gaps are significantly smaller for

both countries.

As in the analysis of revision statistics, we start evaluating forecasts later than in the US case.

For both exercises, evaluation starts in 1991Q1 (1985Q1) for Germany (the UK). We again find

that using Hamilton-type real-time gaps yields significantly greater output growth forecast accuracy

compared to using the HP filter. These accuracy gains range between 16%−25% for Germany and

21% − 25% for the UK. All gains are significant either at the 1% or 5% level. Compared to the

originally proposed filter, our modification shows small advantages for both countries over some

horizons. While, the forecasts are statistically significantly more accurate for Germany at shorter
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and longer horizons, for the UK this holds for h = 5. We also find accuracy gains with respect

to the BP filter. They amount up to 22% and are significant at the 1% level over all horizons for

Germany. For the UK, they amount up to 14%. Here, gains are statistically significant at the

10% level over most horizons from horizon 4 onward. Similar to the US case, the results in the

inflation forecasting exercise are inconclusive in terms of choosing a particular real-time output

gap measure.

Overall, conducting the analysis for Germany and the UK underlines the benefits of using

Hamilton-type real-time output gap measures compared to alternative simple time series filters as

they are both, robust in real-time and economically more meaningful. As for the US, the modified

Hamilton filter shows some advantages in the various evaluation exercises compared to the original

one on top of the conceptual advantages demonstrated based on the spectral density analysis.

6 Conclusion

We have proposed a modified version of the Hamilton filter for the estimation of reliable and

economically meaningful real-time output gaps. It shares the favorable real-time properties of the

original Hamilton filter and is similarly easy to compute. However, it has a much better coverage of

typical business cycle frequencies and yields a smooth estimated trend, while the original approach

does not. The original approach is very useful for detrending, whereas the modified version allows

for a meaningful economic interpretation of the cyclical component as an output gap and of the

trend as potential GDP. This is particularly important as existing papers applying the Hamilton

filter use it not merely for detrending, but attach an economic interpretation to the filtered time

series. Compared to other simple statistical trend-cycle decomposition techniques, such as the

HP or the BP filter, the real-time output gaps based on the modified and the original Hamilton

filter show a much higher correlation with ex post assessments of output gaps from important

policy institutions. Hence, the methods yield real-time output gaps that capture business cycle

dynamics that are deemed important from a practitioner’s perspective. They also yield greater

output growth forecasting accuracy compared to forecasts that are based on output gaps computed

with other simple statistical trend-cycle decomposition techniques. Hence, our results suggest that

the modified and the original Hamilton filter should be preferred over the HP or BP filter as simple

decomposition techniques in context of output gap estimation. Our results do not only hold for
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US real-time output gap estimation but to a large extent also for estimations based on data for

the UK and Germany.
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