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Abstract

We show that low trend in�ation strongly a¤ects the dynamics of a standard

Neo-Keynesian model where monetary policy is described by a standard Taylor

rule. Moreover, trend in�ation enlarges the indeterminacy region in the parameter

space, substantially altering the so-called Taylor principle. The main results hold for

di¤erent types of Taylor rules, inertial policy rules and indexation schemes. The key

message is that, whatever the set up, the literature on Taylor rules cannot disregard

average in�ation in both theoretical and empirical analysis.
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1 Introduction

Average in�ation in the post-war period in developed countries was moderately di¤erent

from zero and varied across countries.1 Nonetheless, much of the vast literature on

monetary policy rules worked with models log-linearized around a zero in�ation steady

state (see e.g., Clarida et al., 1999, Galí, 2003, Woodford, 2003, or the book edited by

Taylor, 1999).

To address this inconsistency, we extend the standard small scale Neo-Keynesian

model to allow for positive trend in�ation.2 First, we add a Taylor rule to describe

the monetary authority behavior and then, examine how the properties of our economy

change as the trend in�ation varies. We �nd that moderate levels of trend in�ation: (i)

modify the determinacy region in the parameters space; (ii) alter the impulse response

function of the model economy after a cost-push shock. As a consequence, trend in�ation

signi�cantly a¤ects also the (unconditional) variances of key variables, such as in�ation

and output.

With respect to (i), we show that trend in�ation substantially changes the well-

known Taylor principle for equilibrium determinacy under rational expectations. This

result is due to the relative prices distortions that trend in�ation causes in the steady

state of the model, a surprisingly neglected issue in the literature. The long-run Phillips

curve is highly non-linear in the Neo-Keynesian model. It is positively sloped in the

in�ation-output plane, when steady state in�ation is zero. However, because of the

strong price-dispersion e¤ect, the slope turns quite rapidly negative for extremely low

values of trend in�ation. We will show that this feature has signi�cant implications

for the celebrated Taylor principle. The results in most of the literature therefore are

based on a case (i.e., zero steady state in�ation) that is both empirically unrealistic and

theoretically special.

Our key result is then generalized and proved to be robust to: (i) di¤erent kinds

of Taylor type rules proposed in the literature (contemporaneous, backward-looking,

forward-looking and hybrid, see e.g., Clarida et al., 2000, Bullard and Mitra, 2002); (ii)

inertial Taylor rules for all the cases in (i); (iii) indexation schemes (see, e.g., Yun, 1996

and Christiano et al., 2005); (iv) di¤erent parameter values.

1For example, Schmitt-Grohe and Uribe (2004a,b) calibrate trend in�ation for the U.S. as 4.2%,

based on data from 1960-1998. In the same period, Germany, Italy, Spain, and the UK exhibited

average in�ation rates of 3.22%, 8.12%, 7.1% and 9% respectively (source: OECD).
2Here, we abstract for other possible form of frictions, since we want to investigate the relationship

between Taylor rules and trend in�ation. In what follows, we shall use indi¤erently trend in�ation or

long-run in�ation to denote the in�ation rate in the deterministic steady state.



In summary, this research shows that the literature on monetary policy rules cannot

neglect trend in�ation, as the speci�cation of the theoretical model (and the results) is

very sensitive to low and moderate trend in�ation levels, as generally observed empiri-

cally in western countries.

The seminal analysis in Clarida et al. (2000), which might be misleading, can be

taken as an example. Indeed, Clarida et al. (2000) data set features an average in�ation

of roughly 4% the US economy, quite di¤erent from zero in�ation (see Table II, p.157,

therein). Their analysis, however, is based on a theoretical model that assumes zero

trend in�ation. On the one hand, positive trend in�ation changes the determinacy

region, such that one needs to take trend in�ation into account in order to label the

equilibrium determinate. On the other hand, once an equilibrium is identi�ed to pass

from determinate to indeterminate or vice versa, it is yet to be investigated whether

this is due to a change in the monetary policy regime (i.e., a change in the Taylor rule

parameters) and/or to a change in the trend in�ation level.

A further contribution of the paper is to provide a �neat�presentation of the standard

log-linear Neo-Keynesian model approximated around a general trend in�ation level with

and without indexation schemes. As such, this article generalizes the model in Ascari

and Ropele (2004) by allowing for indexation schemes, and complements a series of

other recent papers. Indeed, not many articles in the literature investigate the e¤ects of

di¤erent levels of trend in�ation on the standard Neo-Keynesian model.3

King and Wolman (1996) and Ascari (1998) are early papers that look at the e¤ects

of trend in�ation on the properties of the steady state of such a model. Following these

contributions, Graham and Snower (2004a,b) and Karanassou et al. (2005) study the

long-run relationship between in�ation and output in the Neo-Keynesian framework.

Ascari (2004) examines, instead, the e¤ects of trend in�ation on the dynamics of the

standard model. The analysis in Ascari (2004) is extended by Amano et al. (2005).

Ascari and Ropele (2004) analyzes how optimal short-run monetary policy changes with

trend in�ation. Cogley and Sbordone (2005) estimates the New Keynesian Phillips Curve

allowing for trend in�ation. The key �nding by Cogley and Sbordone (2005) is that once

shifts in trend in�ation are properly taken into account, the NKPC is structural. That

is, a Calvo pricing model with constant parameters �ts the data very well with no need

for indexation or backward-looking component.

3A few papers do allow for non-zero steady state in�ation in their analysis, but they do not look

at what happens when trend in�ation changes. Khan et al. (2003) solve the optimal monetary policy

problem and then investigate the dynamics of the economy around the given optimal steady state

in�ation level. Schmitt-Grohe and Uribe (2004a,b) simulates the model under di¤erent Taylor type

rules calibrating average in�ation on US data.
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Finally, Kiley (2004) and Hornstein and Wolman (2005) are the two most related

paper to ours. Kiley (2004) investigates the e¤ect of trend in�ation of a model in which

prices are staggered a là Taylor (1979) and monetary policy is described by Taylor

rules. Hornstein and Wolman (2005) looks at a model similar to Kiley (2004), but

extended to allow for �rm-speci�c capital. Our paper complements these very recent

papers by assuming the more popular Calvo (1983) staggered pricing framework, and

by generalizing the results to di¤erent Taylor type rules and indexation schemes.

2 The Model

In this section, we extend the basic New Keynesian framework of Clarida et al. (1999),

Galí (2003) and Woodford (2003) to allow for positive trend in�ation and price indexa-

tion.

Households

Households live forever and their expected lifetime utility is:

E0

1X
t=0

�t

"
logCt + �m

(Mt=Pt)
1��m � 1

1� �m
� �n

N1+�n
t

1 + �n

#
, (1)

where � 2 (0; 1) is the subjective rate of time preference and E0 is the expectation

operator conditional on time t = 0 information. The instantaneous utility function is

increasing in the consumption of a �nal good (Ct) and real money balances (Mt=Pt)

and decreasing in labor (Nt). The positive parameters �m and �n represent inverse

intertemporal elasticity of substitution in real money balances and labor respectively;

�m and �n are positive constants. At a given period t, the representative household

faces the following nominal �ow budget constraint

PtCt +Mt +Bt � PtwtNt +Mt�1 + (1 + it�1)Bt�1 + Ft + Tt (2)

where Pt is the price of the �nal good, Bt represents holding of bonds o¤ering a one-

period nominal return it, wt is the real wage, and Ft are �rms�pro�ts that are returned to

households. In addition, each period the government makes lump-sum nominal transfers

to households of Tt. The household�s problem is to maximize (1) subject to the sequence

of budget constraints (2), yielding the following �rst order conditions:

labor supply : �nN
�n
t Ct = wt, (3)

money demand : �m (Mt=Pt)
��m Ct = it= (1 + it) , (4)

consumption Euler eq. : 1=Ct = �Et [1=Ct+1 (1 + it)Pt=Pt+1] . (5)
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Equations (3), (4), (5) have the usual economic interpretation.

Final Good Producers

In each period t, a �nal good Yt is produced by perfectly competitive �rms, using

a continuum of intermediate inputs Yi;t and a standard CES production function Yt =hR 1
0 Y

(��1)=�
i;t di

i�=(��1)
, with � > 1. Taking prices as given, the �nal good producer

chooses intermediate good quantities Yi;t to maximize pro�ts, resulting in the usual

demand schedule: Yi;t = (Pi;t=Pt)
�� Yt. The zero pro�t condition of �nal good producers

leads the aggregate price index Pt =
hR 1
0 P

1��
i;t di

i1=(1��)
.

Intermediate Goods Producers

Intermediate inputs Yi;t are produced by a continuum of �rms i 2 [0; 1] with tech-
nology Yi;t = Ni;t. Prices are sticky, with intermediate goods producers in monopolistic

competition setting prices according to a standard discrete-time version of the Calvo

(1983) mechanism. In each period there is a �xed probability (1� �) that a �rm can

re-optimize its nominal price, i.e., P �i;t:With probability �, instead, the �rm must: either

keep its nominal price unchanged; or index its nominal price to steady state in�ation

(e.g., Yun (1996)); or index its nominal price to past in�ation rate (e.g., Christiano

et al. (2005)). In general, the problem of a price-resetting �rm can be formulated as

max
p�i;t

Et

1X
j=0

�jDt;t+j

264P �i;t
�
�"j
�1�= �

�"t;t+j�1

�=
Pt+j

Yi;t+j � �i;t+j

375 ,

s.t. Yi;t+j =

264P �i;t
�
�"j
�1�= �

�"t;t+j�1

�=
Pt+j

375
��

Yt+j and (6)

�t;t+j�1 =

8<:
�

Pt
Pt�1

��
Pt+1
Pt

�
� � � � �

�
Pt+j�1
Pt+j�2

�
for for j = 1; 2; � � �

1 for j = 0.
(7)

where �i;t is the real total cost function, Dt;t+j is the stochastic discount factor, � is
the level of trend in�ation (introduced below), �t;t+j�1 represents the cumulative gross

in�ation rates (CGIR, hereafter), and " 2 [0; 1] captures the degree of price indexation.
= is an indicator function that takes a value of either zero or one. = = 1 and " 2 [0; 1]
yield price indexation to past in�ation; = = 0 and " 2 [0; 1] yield price indexation to
trend in�ation; �nally, " = 0 yields the case of no price indexation. The solution is a
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formula for the optimal reset price:4

P �i;t
Pt

=
�

� � 1

Et
P1
j=0 �

jDt;t+j
�
��t+1;t+jYt+j�

0
t+j

�
���"j

�1�= �
���"t;t+j�1

�=�
Et
P1
j=0 �

jDt;t+j
�
���1t+1;t+jYt+j

�
�(1��)"j

�1�= h
�
(1��)"
t;t+j�1

i=� , (8)

where �0t � @�t (Yi;t) =@Yi;t denotes the real marginal costs function, that is simply equal
to the real wage, given the linear technology.

To fully understand the e¤ects of trend in�ation on the optimal resetted price, it is

insightful to look at the case of no indexation (i.e., " = 0), for which the equation (8)

becomes

P �i;t
Pt

=
�

� � 1
Et
P1
j=0 �

jDt;t+j
n
��t+1;t+jYt+j�

0
t+j

o
Et
P1
j=0 �

jDt;t+j
n
���1t+1;t+jYt+j

o , (9)

and then focus on the steady-state behavior of (9). In the standard case of zero trend

in�ation, � = 1 and the CGIRs attached to future expected terms are equal to one at

all times. Future expected terms are discounted by ��. With positive trend in�ation,

� > 1 and two e¤ects come into play. First, CGIRs at di¤erent time horizons shift

upwards, changing the e¤ective discount factors ���� and �����1 in the numerator and

denominator respectively. Accordingly, when intermediate �rms are free to adjust, they

will set higher prices to try to o¤set the erosion of relative prices and pro�ts that trend

in�ation automatically creates. Second, future terms in (9) are progressively multiplied

by larger CGIRs. This means that optimal price-setting under trend in�ation re�ects

future economic conditions more than short-run cyclical variations. Price-setting �rms

become more �forward-looking�, as does in�ation. These are the main e¤ects of trend

in�ation on the dynamics of the model. Extending the same reasoning to (8), it is easy

to see that indexation mitigates the two e¤ects just described (in steady state the two

cases = = 0 and = = 1 are equivalent).
Relative price dispersion and real marginal costs

At the level of intermediate �rms, it holds true that (Pi;t=Pt)
�� Yt = Ni;t. Inte-

grating this expression over i yields Ytst =
R 1
0 Ni;tdi = Nt, where the variable st �R 1

0 (Pi;t=Pt)
�� di . In other words, the variable st measures the relative price dispersion

4 In a deterministic steady state equation (8) converges if and only if ����(1�") < 1. Given �, �

and ", this condition constrains the maximum level of trend in�ation. Throughout the analysis, we will

therefore look at levels of trend in�ation that meet this restriction. The case of full price indexation to

past in�ation is discussed in details in Ropele (2007). See also Sahuc (2005) for the partial indexation

case.
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across intermediate �rms and can be shown to evolve as

st = (1� �)
�
P �i;t
Pt

���
+ �

"
(Pt=Pt�1)

(��")= (Pt�1=Pt�2)
"(1�=)

#�
st�1. (10)

Schmitt-Grohé and Uribe (2004b) shows that st is bounded below at one. st represents

the resource costs (or ine¢ ciency loss) due to relative price dispersion under the Calvo

mechanism: the higher st, the more labour is needed to produce a given level of output.

The variable st directly a¤ects the real marginal costs via the the labor supply equation

(3): �0t = wt = �nY
�n
t s�nt Ct.

Government

The government injects money into the economy through nominal transfers, so Tt =

M s
t �M s

t�1where M
s is the aggregate nominal money supply. Most importantly, we

assume that steady state money supply evolves according to the following �xed rule:

M s
t = �M s

t�1, where � is the (gross) steady-state growth rate of the nominal money

supply.

Market clearing conditions

The market clearing conditions in the goods, money and labour markets are: Yt = Ct;

Y si;t = Y
D
i;t = [Pi;t=Pt]

�� Yt, 8i; Mt =M
s
t ; and Nt =

R 1
0 Ni;tdi.

3 A generalized New Keynesian Phillips Curve

Log-linearizing (3) and (5), and using the market clearing condition Ŷt = Ĉt; we obtain:

�n bNt + bYt = bwt, (11)

bYt = Et bYt+1 � �bit � Etb�t+1� , (12)

where hatted variables denote percentage deviations from deterministic steady state.

The log-linearization of equations (8) and (10) leads to a system of three �rst-order

di¤erence equations that characterize the generalized NKPC under trend in�ation (and

price indexation):8>>>>>>>><>>>>>>>>:

�t = ��
1�"Et�t+1 + �bYt + � �n

1+�n
bst + �Et h(� � 1)�t+1 + b�t+1i

b�t = ���(��1)(1�")Et h(� � 1)�t+1 + b�t+1i
bst = ��t + ��

�(1�")bst�1
(13)
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where �t � b�t � = ("b�t�1), b�t is an auxiliary variable and the coe¢ cients �, � and �
are convolutions of parameters, inter alia, trend in�ation, and price indexation (see the

Appendix). Our generalization encompasses the standard NKPC. Indeed, when � = 1;

then � = � = 0; and both the auxiliary variable and the price dispersion measure are

irrelevant for in�ation dynamics (up to �rst order). The system (13) therefore reduces

to �t = �Et�t+1 + �Ŷt.

As stressed by Ascari and Ropele (2004), trend in�ation dramatically alters the in-

�ation dynamics compared to the usual Calvo model with � = 1. First, trend in�ation

enriches the dynamic structure adding two new variables: the variable b�t, which is a
forward-looking variable, and the variable bst, which is instead, a predetermined variable.
Second, trend in�ation directly a¤ects the NKPC coe¢ cients. Since price-setting be-

comes more �forward-looking�, trend in�ation leads to a smaller coe¢ cient on current

output gap and a larger coe¢ cient on future expected in�ation for standard calibra-

tion values. In the plane (bYt; b�t), consequently, the short-run NKPC �attens. In other
words, the contemporaneous relation between b�t and bYt progressively weakens, and the
in�ation rate becomes less sensitive to variations in the output gap and more forward

looking. Third, trend in�ation increases the autoregressive parameter in the price dis-

persion equation yielding, ceteris paribus, a more persistent in�ation adjustment path.

Fourth, the e¤ects of trend in�ation are counterbalanced by price indexation: the larger

the degree of price indexation, the smaller the e¤ect of trend in�ation. In the limiting

case of full indexation, the e¤ects of trend in�ation are completely neutralized.

4 Determinacy and Taylor rule

In this section we analyze how trend in�ation a¤ects the rational expectations equilib-

rium (REE, henceforth) determinacy properties.5

4.1 No indexation

To begin with, we assume no indexation (i.e., " = 0), and that monetary authority sets

the short run nominal interest rate according to the classic contemporaneous Taylor

rule, i.e., {̂t = ���̂t + �Y Ŷt. Figure 1 illustrates determinacy regions for di¤erent levels

of annualized trend in�ation, i.e., 0%, 2%, 4%, 6% and 8%, in the discretized plane

5Note that: (i) as usual, indeterminacy refers to a situation in which the number of explosive eigen-

values is lower than the number of forward-looking variables; (ii) since, as common, we are studying

linear approximations of equilibria, all our statements relates to local properties of the equilibria and to

small deviations from steady states.
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(��; �Y ). Furthermore, we set � = 0:75, � = 0:99, � = 11, and �n = 1.

Result 1. REE determinacy. In the no indexation case, trend in�ation un-

ambiguously a¤ects the REE determinacy properties: as �� increases, the determinacy

region rapidly gets smaller, increasing the possibility of sunspots �uctuations.

As shown in Figure 1, raising trend in�ation from zero to 2% visibly modi�es the

determinacy region. The determinacy frontier closes like scissors. The number of im-

plementable interest rate rules drop by a remarkable �53:5%. Moving to a higher trend
in�ation, say 4% or 6%, the contraction is even more evident. Contemporaneously, the

determinacy region slightly shifts rightward. Finally, at 8% trend in�ation, the determi-

nacy region shrinks by an impressive 99% compared to the case of zero trend in�ation.

Only 1% of initial policy rules still ensure REE uniqueness. These rules, in particular,

are characterized by a strong reaction to in�ation and unresponsiveness to output gap.

Result 2. Break-Down of the �Taylor principle�. With trend in�ation, the

Taylor principle and the �generalized Taylor principle�, i.e., �� + �Y
@Ŷ
@�̂ jLR > 1, only

hold as necessary conditions for REE determinacy.

In the recent monetary policy literature, it has been shown that the contemporaneous

Taylor rule ensures REE determinacy if and only if

�� + �Y
@Ŷ

@�̂
jLR > 1, (14)

for �� and �Y non-negative and at least one strictly positive (where LR stands for

long run). As stressed by Bullard and Mitra (2002) and Woodford (2001, 2003) among

others, condition (14) generalizes the original Taylor principle, i.e., �� > 1: the short-

run nominal interest rate should rise by more than the increase of in�ation in the long

run.

In the case of zero in�ation, @Ŷ@�̂ jLR is given by
1��
� ; and (14) has thus three main

implications. First, (14) is a necessary and su¢ cient condition in the positive orthant

of the space (��; �Y ). Second, (14) implies a trade o¤ between �� and �Y : values

of �� smaller than one still preserve the REE determinacy provided the central bank

responds more aggressively to output deviations. Third, in reality this trade-o¤ is very

weak. Indeed, the role of �Y has been largely neglected, because � is calibrated to be

very close to one and �� > 1 su¢ ces for condition (14) to be satis�ed (see e.g., Clarida

et al., 2000).

The "generalized" Taylor principle continues to be a crucial condition for determi-

nacy in a model with trend in�ation. In our model economy with trend in�ation@Ŷ@�̂ jLR

7



is a heavily complicated expression (see equation (26) in the Appendix 8.2). Plotting

(14) for di¤erent values of trend in�ation then, we obtain exactly the left-lateral frontier

in Figure 1. For standard calibration, however, as trend in�ation rises, the derivative
@Ŷ
@�̂ jLR: (i) switches sign very quickly, from positive to negative, and (ii) increases in

absolute value.

As a consequence, trend in�ation rapidly and steadily overturns all the implications

of (14) discussed above for the zero in�ation case. First, condition (14) ceases to be a

su¢ cient in the positive orthant of the space (��; �Y ). Indeed, (14) only partially draws

the upper determinacy frontier in Figure 1. The lower determinacy frontier progressively

shifts upwards and eventually crosses the line de�ned by condition (14) in the positive

orthant. Note then that the classic Taylor principle (i.e., �� > 1) does not su¢ ce

to ensure REE determinacy any longer, because the smallest admissible value of ��
positively co-moves with �. In the case of 6% in�ation, for example, �� needs to be

roughly higher than two. Second, even for trend in�ation levels close to zero, the trade

o¤ between �� and �Y disappears, because the slope of the upper frontier switches

sign. Thus, a central bank that wants to lower ��; must at the same time respond less

aggressively to the output gap to avoid indeterminacy. Equivalently, a central bank

much concerned with output variations has to be even tighter on in�ation. Moreover,

the higher trend in�ation the �atter the upper determinacy frontier and the larger the

increase in �� per unit of �Y . Third, the coe¢ cient on the output gap now plays a key

role, even for moderate levels of trend in�ation. As an example, in Figure 1 we highlight

with a cross the classical Taylor rule, i.e., �� = 1:5 and �Y = 0:5. As soon as trend

in�ation is larger than 2%, the Taylor rule yields REE indeterminacy. Hence, in real

world applications, the value of �Y cannot be neglected, and it should be generally very

low for realistic values of trend in�ation.

To understand these results, it is important to consider the steady state relationship

between in�ation and output, a surprisingly neglected issue in the Neo-Keynesian liter-

ature. The long-run NKPC is extremely non-linear around � = 1: it is positively sloped

for � = 1 (because of a discounting e¤ect), but then quite rapidly slopes negatively,

because of the strong relative price dispersion e¤ect. It follows that @Ŷ@�̂ jLR is positive if
the model is log-linearized around a zero in�ation steady state, while it turns negative

for very low levels of positive trend in�ation (see Appendix 8.2). As we discussed above,

these e¤ects have radical implications on the celebrated Taylor principle. The results

in most of the literature are therefore based on a particular case, i.e., �� = 1, which is

theoretically special as well as empirically unrealistic.

In summary, Figure 1 shows that as trend in�ation rises implementable monetary
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rules call for increasingly large and positive coe¢ cients on in�ation and small coe¢ cients

on output gap. Eventually, for large enough values of trend in�ation the central bank has

no choice but being an in�ation targeter. These results agree with the policy prescription

of Schmitt-Grohe and Uribe (2004a,b) and of Bullard and Mitra (2002). Even though

dealing with two rather di¤erent problems, these articles robustly suggest monetary

policy rule characterized by a high coe¢ cient on �� and a close to zero coe¢ cient on

�Y . Allowing for trend in�ation casts doubt on the leaning against the wind policy

prescription in Clarida et al. (1999). As trend in�ation increases, the central bank

cannot take the risk of responding to the output gap, but must just focus only in�ation.

Ascari and Ropele (2004) also shows that this is true for the optimal monetary policy

and provides basic intuition of why this happens.

4.2 Price Indexation

In this section non-adjusting intermediate �rms index their prices either to past in�ation

or to trend in�ation. In both cases, we set " = 0:5.

Result 3. Price indexation counteracts the e¤ects of trend in�ation on REE deter-

minacy properties described in the previous Section.

Figure 2 clearly con�rms the qualitative results induced by trend in�ation shown

above. Partial indexation, however, mitigates these e¤ects. The closure of determinacy

regions is now less critical. Importantly, the lowest admissible value of �� becomes less

sensitive to trend in�ation. Again, as trend in�ation increases, the central bank has

a smaller set of implementable policies. Thus, the monetary authority should respond

more to in�ation and less to output gap.

Result 4. For a given level of trend in�ation, price indexation to past in�ation

always yields a set of implementable interest rate rules greater than under long-run

indexation.

It is worth observing that this result arises because with price indexation to past

in�ation the lower frontier tilts downwards, while the upper frontier exhibits a very

similar behavior in both indexation cases. This means that most of the extra policy

options, available for the monetary authority in the past in�ation indexation case, regard

the peculiar possibility of more pro-cyclical monetary policy (i.e., more negative values

of �Y ): In other words, the central bank can still ensure determinacy of equilibrium, if it

remains looser on in�ation deviations but, oddly enough, it responds more pro-cyclically

9



to Ŷt. Finally, full past in�ation indexation restores the pivotal role of the original

Taylor principle, because �� > 1 becomes then a necessary and su¢ cient condition for

determinacy (see Ropele, 2007).

4.3 Inertial interest rate rule

Empirical works on Taylor rules show that central banks tend to adjust the nominal

interest rate in response to changes in economic conditions only gradually (see, e.g.,

Rudebusch, 1995, Judd and Rudebusch,1998 or Clarida et al., 2000). Moreover, the

recent monetary literature has emphasized the importance of inertia in the conduct of

monetary policy with a forward-looking private sector (e.g., Woodford, 2003). Thus, in

this section we explore the e¤ects of trend in�ation on the REE determinacy properties

when our contemporaneous Taylor rule allows for inertia, that is: {̂t = ���̂t + �Y Ŷt +

�i{̂t�1.

It is well known that in the standard model with zero steady state in�ation, in-

terest rate inertia makes indeterminacy less likely. Figure 3 reports our results for

�i = 0:5; 1; 2 and 5, showing that the somewhat counterintuitive feature that explosive

rules enlarge the determinacy region survives in the trend in�ation case. As discussed

in Rotemberg and Woodford (1999), in a similar model but with zero in�ation steady

state, it is exactly the possibility of explosiveness of the nominal interest rate that keeps

the model on track.6 Indeed, in a zero trend in�ation model, condition (14) becomes

�� + �Y (1� �) =� > 1� �i, such that �i � 1 is a su¢ cient condition for a determinate
equilibrium in the positive orthant. Moreover, a su¢ cient condition �� > 1� �i can be
easily checked from any Taylor rule estimate. Note that this latter implies no role for

�Y :

Result 5. With trend in�ation, interest rate inertia makes the Taylor principle,

i.e., �� > 1, plainly insigni�cant. It is the value of �Y that actually matters for REE

determinacy.

Again, trend in�ation radically changes the implications of the model. Looking at

panel B, it is evident that there is no more a su¢ cient condition on �� (provided that

is positive) or on �i. On the contrary, for su¢ ciently high levels of trend in�ation,

we can eventually state a su¢ cient condition on �Y : As stressed in Section 4.1, this

is due to the switch in the sign of @Ŷ@�̂ jLR: Moreover,
@Ŷ
@�̂ jLR is increasing with trend

in�ation in absolute value. For values as high as 6% trend in�ation, @Ŷ@�̂ jLR is so high
6The case of no feedback from in�ation and output gap on the nominal interest rate (i.e., �� =

�Y = 0) is of course indeterminate, for values of �i bigger than 1.
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(in absolute value), that �Y becomes the crucial monetary policy parameter for (14)

to be satis�ed. Graphically the frontier that corresponds to condition (14) �attens in

Figure 3. It follows that what matters for determinacy is that monetary policy should

not respond to the output gap, when monetary policy is characterized by an inertial (or

superinertial) Taylor rule and moderate trend in�ation (6% to 8%).

5 Dynamic Analysis

We now assess how trend in�ation impinges on the impulse response functions (IRFs,

henceforth) and output/in�ation e¢ cient policy frontier. To this purpose, as in Galí

(2003), we append to the �rst equation in (13) a cost-push shock ut, whose law of

motion is ut = 0:8ut�1 + �t and �t �i.i.d N(0,1), and set �� = 1:5 and �Y = 0:5 (and
�i = 0), as in the original Taylor speci�cation.

5.1 Impulse response functions

Figure 4 displays the IRFs of the output gap, in�ation rate, nominal and real interest

rate to a unit cost-push shock in the case of both no indexation and price indexation

to past in�ation.7 Each panel reports a family of IRFs associated to di¤erent levels

of trend in�ation for which the REE is determinate. Panel A shows the case of zero

in�ation steady state and no price indexation. In response to a unit cost-push shock,

the monetary rule calls for a large nominal interest rate increase, su¢ cient enough to

determine a positive real interest rate. Such a response, in turn, opens up a series of

negative output gaps that gradually drives the in�ation rate back to equilibrium.

Result 6. Positive trend in�ation shifts outwards IRFs of output and in�ation,

following a cost-push shock.

Consider the case of 2% trend in�ation and no indexation. Although the qualitative

pattern is similar to that under zero in�ation steady state, some key di¤erences are

worth stressing. First, trend in�ation visibly alters the impact e¤ects by producing an

outward shift. Second, the outward shift in IRFs remains throughout the whole return

path to steady state, thus suggesting a tighter monetary policy and a deeper recession.

In short, consistent with the results in Ascari and Ropele (2004), the higher trend

7The results of this section do not qualitatively change if other values of ��and �Y are chosen. For

the standard Taylor rule, we can plot just two IRFs because the REE is not determinate for trend

in�ation larger than 2% . We do not report the IRFs for price indexation to trend in�ation, because

such indexation rule only generates a (downward) rescaling with respect to the no indexation case.
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in�ation, the worse trade-o¤ monetary policy faces: the deeper the recession and the

higher the deviation of in�ation from steady state. Figure 4 also illustrates the e¤ects

of price indexation to past in�ation. Parall to the previous case, trend in�ation shifts

outwards the IRFs. As stressed by Christiano et al. (2005), price indexation to past

in�ation creates a hump-shape in the IRFs of output and in�ation, due to the inclusion

of �t�1 in the New Keynesian Phillips curve.

5.2 E¢ cient Policy Frontiers

Next, we analyze the e¤ects of trend in�ation on unconditional variances of output

and in�ation, arguments that typically characterize the central bank�s loss function.

For di¤erent levels of trend in�ation, we construct the output-in�ation e¢ cient policy

frontier by varying, in turn, either �� or �Y in the range [0; 3]. When varying ��, we

set �Y = 0:5; while when varying �Y , we set �� = 2:5.
8

Result 7. Positive trend in�ation moves north-east the e¢ cient policy frontier,

yielding worse outcomes for both in�ation and output variability.

This is the main result of this section, and we think a quite important one: it

is distinctly shown by the outward shift of the e¢ cient policy frontiers in Figure 5.

Combinations of �2� and �
2
Y attainable with zero trend in�ation are not anymore so as

trend in�ation rises: either a higher value of �2Y is necessary for the same �
2
� or vice versa.

Moreover, as trend in�ation increases, the e¢ cient policy frontier substantially shortens

(i.e., it comprises a fewer number of points), in that the REE enters the indeterminacy

region. Not surprisingly, Figure 5 also shows that, for a given level of �, price indexation

to trend in�ation shifts the e¢ cient policy frontier south-west, partially o¤setting the

e¤ects of trend in�ation. The results are strengthened in the case of price indexation to

past in�ation, as shown in Figure 6.

6 Robustness

We explored whether the results of the previous sections are robust to simple variants of

the Taylor rule commonly used in the literature (i.e., forward-looking interest rate rule,

backward-looking interest rate rule, and various kinds of hybrid interest rate rules) and

to changes in the structural parameters of the model. The general conclusion is that the

8The value for �� is di¤erent from the one used in the previous section, for convenience of presentation.

The e¢ cient policy frontiers would exhibit otherwise very few points as trend in�ation increases, because

the REE would quickly become indeterminate.
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key results found in the previous analysis persist. Moderate trend in�ation substantially

changes the determinacy region in the parameter space and the dynamic properties of

the model economy in all cases. In this section, we brie�y report a few results worthy

of note.9

Backward looking interest rate rule

When the monetary authority sets the nominal interest rate as a function of lagged

in�ation and lagged output gap, i.e., {̂t = ���̂t�1 + �Y Ŷt�1, positive levels of long run

in�ation surprisingly increase the set of determinate policy rules, relative to the case

of zero in�ation steady state. Panel A of Figure 7 illustrates the standard case of zero

in�ation steady state in this instance. The panel is divided into four parts by two

lines: one is almost horizontal at �Y = 2, the other one corresponds to the equivalent of

condition (14). Note that in the parameters space above the almost horizontal line at �Y
= 2, the determinacy region now lies on the left of condition (14) and not on its right,

where the explosive region lies. The other panels of Figure 7 shows the e¤ect of increasing

trend in�ation. Graphically it is still the same, as the line corresponding to (14) again

visibly rotates clockwise.10 However, due to the fact that now the determinacy region

lies partly on the left and partly on the right of this line, the e¤ect of trend in�ation

is less clear-cut. Roughly speaking, dividing the parameters space in two regions, as

trend in�ation increases: (i) above the almost horizontal line at �Y = 2, the instability

region progressively shrinks and gives way to new determinate combinations; (ii) below

the almost horizontal line at �Y = 2, the indeterminacy region enlarges and reduces

the number of implementable (i.e., determinate) rules. Note that while (ii) is the usual

e¤ect analyzed in the previous sections, (i) is the peculiarity of the lagged interest rate

rule. Given our calibration, (i) is stronger, thus positive trend in�ation always delivers a

larger determinacy region with respect to the case of zero in�ation steady state. As trend

in�ation takes on higher values, then, a central bank following a lagged interest rate rule

is progressively left with two options to guarantee determinacy. On the one hand, it

might respond more to in�ation deviations, and be more cautious towards the output

gap, in line with previous analysis. On the other hand, the central bank can instead

respond aggressively to output gap, i.e. �Y > 2, regardless to the value of ��. Again,

trend in�ation makes the Taylor principle useless and the value of �Y more important.

Introducing inertia in a lagged interest rate rule shifts upward the almost horizontal line

in Figure 7. As a result, the e¤ect described in (i) becomes progressively less important

9The interested reader can download the extended working paper version from the authors�webpage.
10The other almost horizontal line is in contrast only slightly sensitive to changes in trend in�ation

for our calibration values.
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and disappears from the parameters space for superinertial policies. The properties of

the model economy, at last, become very similar as with the other monetary policy rules.

Sensitivity analysis

We also checked the robustness of our �ndings to changes in the structural para-

metrization. Figure 8 reports the REE determinacy regions, when one of the following

parameters values: � = 4, � = 0:5 and �n = 5, are changed in turn in the case of con-

temporaneous interest rate rule and no indexation.11 As expected (see Ascari, 2004), a

lower value of the elasticity of substitution across goods, or a lower value of the Calvo

parameter, make the determinacy frontier to close less rapidly compared to the baseline

calibration (see panels A and B). This leaves room for a relatively larger set of imple-

mentable policies for a given trend in�ation. Considering higher values of the inverse of

the intertemporal elasticity of labour supply does not change qualitatively the results

presented above (see panels C).

7 Conclusions

Despite that average in�ation in the post-war period in developed countries was mod-

erately di¤erent from zero, much of the vast literature on monetary policy rules worked

with models log-linearized around zero in�ation. In this paper, we generalize a stan-

dard Neo-Keynesian model with Calvo staggered prices by taking a linear approximation

around a general trend in�ation level. We then look at how the properties of our model

economy change as the trend in�ation level varies when monetary policy follows a Taylor

rule.

The results show that trend in�ation greatly a¤ects the previous results in the lit-

erature. In particular, moderate levels of trend in�ation modify the determinacy region

in the parameters space, substantially changing the Taylor principle. Moreover, trend

in�ation alters the impulse response functions of the model economy after a cost-push

shock. In line with Ascari (2004) and Ascari and Ropele (2004), this paper therefore

shows that the Neo-Keynesian framework is quite sensitive to variations in the trend

in�ation level, in the sense that higher trend in�ation makes monetary policy much less

e¤ective in controlling the dynamics of the economy. Our key results are then gener-

alized and proved to be robust to: (i) di¤erent kinds of Taylor type rules; (ii) inertial

Taylor rules for all the cases in (i); (iii) indexation schemes; (iv) di¤erent parameter

values.
11The qualitative e¤ects of changes in the values of these parameters are in accordance with intuition,

and robust across di¤erent type of rules, indexation and inertia.
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In summary, the literature on monetary policy rules is based on a case (i.e., zero

steady state in�ation) that is both empirically unrealistic and theoretically special. The

speci�cation of the theoretical model, and consequently all the results, are very sensitive

to low and moderate trend in�ation levels, as empirically observed in western countries.

Our analysis therefore shows that the literature cannot neglect trend in�ation in either

empirical or theoretical analysis. As non-superneutrality is basic feature of the standard

model, future work should aim to integrate the long-run properties and the short-run

dynamics into a full non-linear analysis.
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8 Appendix

8.1 NKPC coe¢ cients

� �
�
1� ��(��1)(1�")

� �
1� ����(1�")

�
��(��1)(1�")

(1 + �n)

� �
�
�1�" � 1

�
�
h
1� ��(��1)(1�")

i

� �
����(��1)(1�")

�
��1�" � 1

�
1� ���(��1)(1�")

For standard calibration values, one can show that @�@�� < 0 and
@�
@�� < 0.

8.2 Generalizing the Taylor principle to trend in�ation

Here we generalize the Taylor principle as discussed in Woodford (2003, chp. 4) to the

case of non-zero steady state in�ation.

In the standard Neo-Keynesian model, with zero in�ation steady state, a contem-

poraneous interest rate rule, i.e. bit = ��b�t + �Y bYt , with both �� and �Y greater than
zero, the original Taylor principle, which called for �� > 1, has been generalized to

�� +

�
1� �
�

�
�Y > 1. (15)

As stressed by Woodford (2003, chp. 4), the logic is that the long run multiplier of

�̂ on {̂ must exceed one:

@{̂

@�̂
= �� + �Y

@Ŷ

@�̂
= �� +

�
1� �
�

�
�Y > 1 (16)

since given the standard NKPC, i.e. �̂t = �Et�̂t+1+�Ŷt , the partial derivative of output

with respect to in�ation is indeed equal (1� �) =�. Notice that in the plane (��;�Y )
the condition can be rewritten as

�Y >
�

1� � (1� ��) ,

which de�nes the area in Figure 1 in the paper, corresponding to the case of zero trend

in�ation.

In this section, we show that in our model with no indexation, i.e. " = 0:

(i) the derivative @Ŷ =@�̂ depends on trend in�ation;
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(ii) for standard calibration values, the derivative @Ŷ =@�̂ turns negative very soon as

trend in�ation is positive;

(iii) for standard calibration values, the derivative @Ŷ =@�̂ increases in absolute value

as trend in�ation increases.

As in the standard case, to derive the partial derivative @Ŷ =@�̂ we make use of the

generalized NKPC, which in the case of no indexation is given by:

b�t = ��Etb�t+1 + �bYt + � �n
1 + �n

bst + �Et h(� � 1) b�t+1 + b�t+1i , (17)

b�t = �����1Et
h
(� � 1) b�t+1 + b�t+1i , (18)

bst = �b�t + ���bst�1. (19)

Suppressing in all the equations the time subscript and rearranging yields:

b� (1� ��) = �bY + � �n
1 + �n

bs+ � h(� � 1) b� + b�i , (20)

b��1� �����1� = �����1 (� � 1) b�, (21)

bs�1� ���� = �b� (22)

To derive the long run multiplier under trend in�ation, we compute the following

derivatives:

@ bY
@b� =

1

�

"
1� �� � � �n

1 + �n

@bs
@b� � � (� � 1)� �@b�@b�

#
, (23)

@b�
@b� =

�����1 (� � 1)
1� �����1

, (24)

@bs
@b� =

�

1� ���
. (25)

Recalling that @{̂
@�̂ = �� + �Y

@Ŷ
@�̂ > 1, it then follows that the generalized condition

reads as:

�� + �Y
1

�

�
1� �� � � �n

1 + �n

�

1� ���
� � (� � 1)� ����

��1 (� � 1)
1� �����1

�
| {z }

@Ŷ =@�̂

> 1. (26)

Clearly, the derivative @Ŷ =@�̂ depends, inter alia, upon trend in�ation and nests

condition for zero in�ation steady state case, because both � and � are zero when � = 1.

However, due to the obscure convolution of parameter it is not possible to deter-

mine analytically the sign of @Ŷ =@�̂ as trend in�ation varies. To this end, we resort
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to numerical results. Figure 1 plots @Ŷ =@�̂ against trend in�ation while keeping the

remaining parameters at their baseline values (� = 0:99, � = 0:75, � = 11 and �n = 1).

As argued in the main text, this derivative is positive at zero steady state in�ation, but

it turns quickly to negative (i.e. at 0.18% annual steady state in�ation rate, that is

� = 1:00045); inverting therefore the slope of the Taylor principle condition in the space

(��;�Y ) in Figure 1 in the main text.
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Figure 1: Contemporaneous interest rate rule and the e¤ects of trend in�ation. The

cross marker identi�es the canonical Taylor rule, i.e. �� = 1:5 and �Y = 0:5.
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Figure 2: Contemporaneous interest rate rule, price indexation and the e¤ects of trend

in�ation. The cross marker identi�es the canonical Taylor rule, i.e. �� = 1:5 and

�Y = 0:5.
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Figure 6: E¢ cient policy frontiers with contemporaneous interest rate rule and price

indexation to past in�ation.
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Figure 7: Backward looking interest rate rule and the e¤ects of trend in�ation (Black

area = REE instability; Grey = REE indeterminacy; White = REE determinacy).
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Figure 8: Sensitivity analysis.
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