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1 Introduction

Volatility forecasting is one of the major objectives in empirical finance. Accurate forecasts of

volatility allow analysts to build appropriate models for risk management, portfolio allocation,

option and futures pricing, etc. For these reasons, scholars have devoted a great deal of attention

to developing parametric as well as non-parametric models to forecast future volatility (cf.

Andersen et al. (2005a) for a recent review on volatility modeling and Poon and Granger (2003)

for a review on volatility forecasting). In this article we introduce a new asset pricing model with

time-varying volatility: the Markov-Switching Multifractal model of asset returns with Student-

t innovations (MSM-t henceforth). The MSM-t is an extension of the MSM model with Normal

innovations which can be estimated via Maximum Likelihood (ML) or Generalized Method of

Moments (GMM) (Calvet and Fisher, 2004; Lux, 2008). Forecasting can be performed via

Bayesian updating (ML) or best linear forecasts together with the generalized Levinson-Durbin

algorithm (GMM).

The MSM model is a causal analog of the earlier non-causal Multifractal Model of Asset

Returns (MMAR) due originally to Calvet et al. (1997). In contrast to, for instance, volatility

models from the (Generalized) Autoregressive Conditional Heteroskedasticity (GARCH) family,

the MSM model can accommodate, by its very construction, the feature of multifractality via

its hierarchical, multiplicative structure with heterogeneous components. Multifractality refers

to the variations in the scaling behavior of various moments or to different degrees of long-

term dependence of various moments. This feature has been reported in several studies by

economists and physicists so that it now counts as a well established stylized fact (Ding et al.,

1993; Lux, 1996; Mills, 1997; Lobato and Savin, 1998; Schmitt et al., 1999; Vassilicos et al.,

2004). Empirical research in finance also provides us with more direct evidence in favor of the

hierarchical structure of multifractal cascade models (Muller, 1997).

The higher degree of flexibility of MSM models in capturing different degrees of temporal

dependence of various moments may also facilitate volatility forecasting. Indeed, recent studies

have shown that the MSM models can forecast future volatility more accurately than traditional

long memory and regime-switching models of the (G)ARCH family such as Fractionally Inte-

grated GARCH (FIGARCH) and Markov-Switching GARCH (MSGARCH) (Calvet and Fisher,
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2004; Lux and Kaizoji, 2007; Lux, 2008). It is also worthwhile to emphasize the intermediate

nature of MSM models between “true” long-memory and regime-switching. It has been pointed

out that it is hard to distinguish empirically between both types of structures and that even

single regime-switching models could easily give rise to apparent long memory (Granger and

Terasvirta, 1999). MSM models generate what has been called “long-memory over a finite in-

terval” and in certain limits converge to a process with “true” long-term dependence. That is,

depending on the number of volatility components, a pre-asymptotic hyperbolic decay of the

autocorrelation in the MSM model might be so pronounced as to be practically indistinguishable

from “true” long memory (Liu et al., 2007).

The flexible regime-switching nature of the MSM model might also allow to integrate seem-

ingly unusual time periods such as the Japanese bubble of the 1980s in a very convenient manner

without resorting to dummies or specifically designed regimes (Lux and Kaizoji, 2007). Nev-

ertheless, the finance literature has only scarcely exploited MSM models so far. Most efforts

with respect to volatility modeling have been directed towards refinements of GARCH-type

models, stochastic volatility models and more recently models of realized volatility (Andersen

and Bollerslev, 1998; Andersen et al., 2003, 2005b; Abraham et al., 2007).

Our motivation for introducing the MSM-t model arises from the fact that the scarce lit-

erature on MSM models of volatility has only considered the Gaussian distribution for return

innovations. However, recent studies have shown that out-of-sample forecasts of volatility mod-

els with Student-t innovations might improve upon those resulting from volatility models with

Gaussian innovations (Rossi and Gallo, 2006; Chuang et al., 2007; Wu and Shieh, 2007). In

addition, there could also be an interaction between the modeling of fat tails and dependency

in volatility: if more extreme realisations are covered by a fat-tailed distribution, the estimates

of the parameters measuring serial dependence in volatility might change which also alters the

forecasting capabilities of an estimated model. From a practical perspective, introducing the

MSM-t model can also shed light on the capabilities of MSM models with fat tail distributions

to account for “tail risk”, i.e. the stylized fact that extreme returns are surprisingly common in

financial markets.

In order to examine the new MSM-t model empirically in relation to other volatility models,
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we perform a comprehensive panel forecasting analysis of MSM vs (FI)GARCH models with

Normal and Student-t innovations. Furthermore, the wide variety of models considered here

provides an interesting platform to study empirical out-of-sample complementarities between

models by means of forecast combinations. The data chosen for our empirical analysis consist

of panels of all-share equity indices, bond indices and real estate security indices at the country

level. We believe that the use of panel data is promising in two main aspects. First, in order

to demonstrate its usefulness, an interesting volatility model should perform adequately for a

cross-section of markets and different asset classes. Second, testing volatility models for a cross-

section of markets comes along with an augmentation of sample information and thus provides

more power to statistical tests.

To preview some of our results, we confirm that ML and GMM estimation are both suitable

for MSM-t models at the typical frequency of financial data. We also find that using GMM

plus linear forecasts leads to minor losses in efficiency compared to optimal Bayesian forecasts

based on ML estimates. This justifies using the former approach in our empirical exercise which

reduces computational costs significantly. Moreover, empirical panel forecasts of MSM-t models

show an improvement over the alternative MSM models with Normal innovations in terms

of mean absolute forecast errors while they seem to deteriorate for (FI)GARCH models with

Student-t innovations in relation to their Gaussian counterparts. In terms of mean absolute

errors, the MSM-t dominates all other models at most forecasting horizons for all asset classes.

In contrast, under a mean squared criterion, we find that the Gaussian MSM model outperforms

its competitors at most horizons. Lastly, forecast combinations obtained from the different MSM

and (FI)GARCH models considered provide an improvement upon forecasts from single models.

The article is organized as follows. The next section provides a short review of the MSM

and (FI)GARCH volatility models. Section 3 presents the Monte Carlo experiments performed

for the MSM-t models. Section 4 addresses the results of our comprehensive empirical panel

analysis of the different volatility models under inspection. The last section concludes with some

final remarks. To save on space, technical details not discussed in the article can be provided

upon request.
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2 The models

The following specification of financial returns is formalized in volatility modeling,

∆pt = υt + σtut, (1)

where ∆pt = lnPt− lnPt−1, lnPt is the log asset price, υt = Et−1∆pt is the conditional mean of

the return series, σt is the volatility process and ut is the innovation term. A simple parametric

model to describe the conditional mean is, for instance, a first order autoregressive model of

the form υt = µ + ρ∆pt−1. Different assumptions can be used for the distribution of ut. For

example, we may assume a Normal distribution, Student-t distribution, Logistic distribution,

mixed diffusion, etc (Chuang et al., 2007). For the purpose of this article we consider two

competing types of distributions for the innovations ut, namely, a Normal distribution and a

Student-t distribution. Defining xt = ∆pt − υt, the “centered” returns are modelled as,

xt = σtut. (2)

From the above general framework of volatility different parametric and non-parametric repre-

sentations can be assumed for the latent volatility process σt. In what follows, we describe the

new family of Markov-Switching Multifractal volatility models as well as the more time-honored

GARCH-type volatility models for the characterization of σt. Since the former models are a

very recent addition to the family of volatility models and our main interest, we devote most

of the next sections to describing them and keep the explanation on the alternative volatility

models short to save on space.
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2.1 Markov-switching Multifractal models

2.1.1 Volatility specifications

Instantaneous volatility σt in the MSM framework is determined by the product of k volatility

components or multipliers M (1)
t ,M

(2)
t , . . . ,M

(k)
t and a scale factor σ:

σ2
t = σ2

k∏
i=1

M
(i)
t . (3)

Following the basic hierarchical principle of the multifractal approach, each volatility component

will be renewed at time t with a probability γi depending on its rank within the hierarchy of

multipliers and remains unchanged with probability 1 − γi. Calvet and Fisher (2001) propose

to formalize transition probabilities according to:

γi = 1− (1− γk)(b
i−k), (4)

which guarantees convergence of the discrete-time version of the MSM to a Poissonian

continuous-time limit. In principle, γk and b are parameters to be estimated. However, previ-

ous applications have often used pre-specified parameters γk and b in equation (4) in order to

restrict the number of parameters (Lux, 2008). Note that (4) or its restricted versions imply

that different multipliers M (i)
t of the product (3) have different mean life times. The MSM

model is fully specified once we have determined the number k of volatility components and

their distribution.

In the small body of available literature, the multipliers M (i)
t have been assumed to follow

either a Binomial or a Lognormal distribution. Since one could normalize the distribution so

that E[M (i)
t ] = 1, only one parameter has to be estimated for the distribution of volatility

components. In this article we explore the Binomial and Lognormal specifications for the

distribution of multipliers. Following Calvet and Fisher (2004), the Binomial MSM (BMSM) is

characterized by Binomial random draws taking the values m0 and 2−m0 (1 ≤ m0 < 2) with

equal probability (thus, guaranteeing an expectation of unity for all M (i)
t ). The model, then, is

a Markov-switching process with 2k states. In the Lognormal MSM (LMSM) model, multipliers
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are determined by random draws from a Lognormal distribution with parameters λ and s, i.e.

M
(i)
t ∼ LN(−λ, s2). (5)

Normalisation via E[M (i)
t ] = 1 leads to

exp(−λ+ 0.5s2) = 1, (6)

from which a restriction on the shape parameter can be inferred: s =
√

2λ. Hence, the distribu-

tion of volatility components is parameterized by a one-parameter family of Lognormals with the

normalization restricting the choice of the shape parameter. It is noteworthy that the dynamic

structure imposed by (3) and (4) provides for a rich set of different regimes with an extremely

parsimonious parameterization. For increasing k there is, indeed, no limit to the number of

regimes considered without any increase in the number of parameters to be estimated.

2.1.2 Estimation and forecasting

In a seminal study by Calvet and Fisher (2004), an ML estimation approach was proposed for

the BMSM model. The log likelihood function in its most general form may be expressed as

L(x1, ..., xT ;ϕ) =
T∑

t=1

ln g(xt|x1, ..., xt−1;ϕ), (7)

where g(xt|x1, ..., xt−1;ϕ) is the likelihood function of the MSM model with various distribu-

tional assumptions. The parameter vector of the BMSM with Gaussian innovations is given by

ϕ = (m0, σ)′. On the other hand, the parameter vector of the BMSM with Student-t innovations

is given by ϕ = (m0, σ, ν)′ where ν (2 < ν <∞) is the distributional parameter accounting for

the degrees of freedom in the density function of the Student-t distribution. When ν approaches

infinity, we obtain a Normal distribution. Thus, the lower ν, the “fatter” the tail.

An added advantage of the ML procedure is that, as a by-product, it allows one to obtain op-

timal forecasts via Bayesian updating of the conditional probabilities Ωt = P(Mt = mi|x1, ..., xt)

for the unobserved volatility states mi, i = 1, ..., 2k. Although the ML algorithm was a huge
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step forward for the analysis of MSM models, it is restrictive in the sense that it works only for

discrete distributions of the multipliers and is not applicable for, e.g. the alternative proposal

of a Lognormal distribution of the multipliers. Due to the potentially large state space (we

have to take into account transitions between 2k distinct states), ML estimation also encounters

bounds of computational feasibility for specifications with more than about k = 10 volatility

components in the Binomial case.

To overcome the lack of practicability of ML estimation, Lux (2008) introduced a GMM

estimator that is universally applicable to all possible specifications of MSM processes. In

particular, it can be used in all those cases where ML is not applicable or computationally

unfeasible. In the GMM framework for MSM models, the vector of BMSM parameters ϕ is

obtained by minimizing the distance of empirical moments from their theoretical counterparts,

i.e.

ϕ̂T = arg min
ϕ∈Φ

fT (ϕ)′AT fT (ϕ), (8)

with Φ the parameter space, fT (ϕ) the vector of differences between sample moments and ana-

lytical moments, and AT a positive definite and possibly random weighting matrix. Moreover,

ϕ̂T is consistent and asymptotically Normal if suitable “regularity conditions” are fulfilled (Har-

ris and Matyas, 1999). Within this GMM framework it becomes also possible to estimate the

LMSM model. In the case of the LMSM model, the parameter vector ϑ = (λ, σ)′ (ϑ = (λ, σ, ν)′)

replaces ϕ in (8) when Normal (Student-t) innovations are assumed.

In order to account for the proximity to long memory characterizing MSM models, Lux

(2008) proposed to use moment conditions for log differences of absolute returns rather than

moments of the raw returns themselves, i.e.

ξt,T = ln |xt| − ln |xt−T |. (9)

The above variable only has nonzero autocovariances over a limited number of lags. To exploit

the temporal scaling properties of the MSM model, covariances of different powers of ξt,T over
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different time horizons are chosen as moment conditions, i.e.

Mom (T, q) = E
[
ξq
t+T,T · ξ

q
t,T

]
. (10)

Here we use a total of nine moment conditions with q = 1, 2 and T = 1, 5, 10, 20 together with

E
[
x2

t

]
= σ2 for identification of σ in the MSM model with Normal innovations. In the case

of the MSM-t model, two sets of moment conditions are used in addition to (10), namely, one

that also considers E [|xt|] (GMM1) and another one that considers E [|xt|], E
[
x2

t

]
and E

[
|x3

t |
]

(GMM2).

We follow most of the literature by using the inverse of the Newey-West estimator of the

variance-covariance matrix as the weighting matrix for GMM1. We also adopt an iterative

GMM scheme updating the weighting matrix until convergence of both the parameter estimates

and the variance-covariance matrix of moment conditions is obtained. However, we note that

including the third moment (E
[
|x3

t |
]
) for data generated from a Student-t distribution would

not guarantee convergence of the sequence of weighting matrices under the standard choice of

the inverse of the Newey-West (or any other) estimate of the variance-covariance matrix for

degrees of freedom ν ≤ 6. Therefore, estimates based on the usual choice of the weighting

matrix would not be consistent. In view of this draw-back of the standard approach, we simply

resort to using the identity matrix for GMM2 which guarantees consistency as all the regularity

conditions required for GMM are met.

Since GMM does not provide us with information on conditional state probabilities, we

cannot use Bayesian updating and have to supplement it with a different forecasting algorithm.

To this end, we use best linear forecasts (Brockwell and Davis, 1991, c.5) together with the

generalized Levinson-Durbin algorithm developed by Brockwell and Dahlhaus (2004). We first

have to consider the zero-mean time series,

Xt = x2
t − E[x2

t ] = x2
t − σ̂2, (11)

where σ̂ is the estimate of the scale factor σ. Assuming that the data of interest follow a
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stationary process {Xt} with mean zero, the best linear h-step forecasts are obtained as

X̂n+h =
n∑

i=1

φ
(h)
ni Xn+1−i = φ(h)

n Xn, (12)

where the vectors of weights φ
(h)
n = (φ(h)

n1 , φ
(h)
n2 , ..., φ

(h)
nn )′ can be obtained from the analytical

auto-covariances of Xt at lags h and beyond. More precisely, φ
(h)
n are any solution of Ψnφ

(h)
n =

κ
(h)
n where κ

(h)
n = (κ(h)

n1 , κ
(h)
n2 , ..., κ

(h)
nn )′ denotes the autocovariance of Xt and Ψn = [κ(i −

j)]i,j=1,...,n is the variance-covariance matrix.

2.2 Generalized Autoregressive Conditional Heteroskedasticity models

2.2.1 Volatility specifications

We shortly turn to the “competing” GARCH type volatility models. The most common

GARCH(1,1) model assumes that the volatility dynamics is governed by

σ2
t = ω + αx2

t−1 + βσ2
t−1, (13)

where the unconditional variance is given by σ2 = ω(1 − α − β)−1 and the restrictions on the

parameters are ω > 0, α, β ≥ 0 and α+ β < 1. Various extensions to (13) have been considered

in the financial econometrics literature. One of the major additions to the GARCH family are

models that allow for long-memory in the specification of volatility dynamics. The FIGARCH

model introduced by Baillie et al. (1996) expands the variance equation of the GARCH model

by considering fractional differences. As in the case of (13), we restrict our attention to one lag

in both the autoregressive term and in the moving average term. The FIGARCH(1,d,1) model

is given by

σ2
t = ω +

[
1− βL− (1− δL)(1− L)d

]
x2

t + βσ2
t−1, (14)

where L is a lag operator, d is the parameter of fractional differentiation and the restrictions

on the parameters are β − d ≤ δ ≤ (2 − d)3−1 and d(δ − 2−1(1 − d)) ≤ β(d − β + δ). The

major advantage of model (14) is that the Binomial expansion of the fractional difference op-
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erator introduces an infinite number of past lags with hyperbolically decaying coefficients for

0 < d < 1. For d = 0, the FIGARCH model reduces to the standard GARCH(1,1) model. Note

that in contrast to the MSM model, both GARCH and FIGARCH are unifractal models. While

GARCH exhibits only short-term dependence (i.e. exponential decay of autocorrelations of mo-

ments) FIGARCH has a homogeneous hyperbolic decay of the autocorrelations of its moments

characterized by the parameter d.

2.2.2 Estimation and forecasting

The GARCH and FIGARCH models can be estimated via standard (Quasi) ML procedures. In

the case of the GARCH(1,1) the parameter vector, say θ, replaces ϕ in (7), where θ = (ω, α, β)′

(θ = (ω, α, β, ν)′) is the vector of parameters if Normal (Student-t) innovations are assumed.

The h-step ahead forecast representation of the GARCH(1,1) is given by

σ̂2
t+h = σ̂2 + (α̂+ β̂)h−1

[
σ̂2

t+1 − σ̂2
]
, (15)

where σ̂2 = ω̂(1 − α̂ − β̂)−1. In the case of the FIGARCH(1,d,1) the parameter vector, say ψ,

replaces ϕ, where ψ = (ω, α, δ, d)′ (ψ = (ω, α, δ, d, ν)′) is the vector of parameters if Normal

(Student-t) innovations are assumed. Note that in practice, the infinite number of lags with

hyperbolically decaying coefficients introduced by the Binomial expansion of the fractional dif-

ference operator (1 − L)d must be truncated. We employ a lag truncation at 1000 steps as in

Lux and Kaizoji (2007). The h-period ahead forecasts of the FIGARCH(1,d,1) model can be

obtained most easily by recursive substitution, i.e.

σ̂2
t+h = ω̂(1− β̂)−1 + η(L)σ̂2

t+h−1, (16)

where η(L) = 1−(1−β̂L)−1(1− δ̂L)(1−L)d̂ can be calculated from the recursions η1 = δ̂−β̂+d̂,

ηj = β̂ηj−1+[(j−1−d̂)j−1−δ̂]πj−1 with πj ≡ πj−1(j−1−d̂)j−1 the coefficients in the MacLaurin

series expansion of the fractional differencing operator (1− L)d.
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3 Monte Carlo analysis

Monte Carlo studies with the new MSM-t were performed along the lines of Calvet and Fisher

(2004) and Lux (2008) in order to shed light on parameter estimation and out-of-sample fore-

casting via the MSM-t vis-à-vis the MSM model with Normal innovations.

insert Tables 1 and 2 around here

3.1 In-sample analysis

Table 1 shows the result of the Monte Carlo simulations of the BMSM-t via ML estimation and

the two sets of moment conditions for GMM estimation (GMM1, GMM2) with a relatively small

number of multipliers k = 8 for which ML is still feasible. The Binomial parameters are set to

m0 = 1.3, 1.4, 1.5 and the sample sizes are given by T1 = 2, 500, T2 = 5, 000 and T3 = 10, 000.

As mentioned previously the admissible parameter range for m0 is m0 ∈ [1, 2] and the volatility

process collapses to a constant if the latter parameter hits its lower boundary 1. The parameter

corresponding to the Student-t distribution is set to ν = 5 and ν = 6. As in the case of Lux

(2008), the main difference in our simulation set up to the one proposed in Calvet and Fisher

(2004) is that we fix the parameters of the transition probabilities in (4) to b = 2 and γk = 0.5

which reduces the number of parameters for estimation to only three.

The simulation results show (as expected) that GMM estimates of m0 are in general less

efficient in comparison to ML estimates. The finite sample standard error (FSSE) and root mean

squared error (RMSE) of the GMM estimates with ν = 5 show that the estimated parameters

for m0 are more variable with lower T and smaller “true” values of m0. As in the case of the

MSM model with Normal innovations, bias and MSEs of the ML estimates for m0 are found

to be essentially independent of the true parameter values m0 = 1.3, 1.4, 1.5. With respect to

GMM estimates with the two different sets of moment conditions (GMM1, GMM2), both the

bias and the MSEs decrease as we increase m0 from 1.3 to 1.5. Interestingly, when the degrees

of freedom are increased from ν = 5 to ν = 6 we find an overall increase in the bias and MSEs

of m0 via GMM1 while the bias and MSEs of m0 via GMM2 decrease.

ML estimates of the distributional parameter ν show a relatively small bias although it
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seems to slightly increase for larger m0 at T = 2, 500. GMM estimates of ν have a larger bias

and MSEs in comparison to ML estimates. As we move from ν = 5 to ν = 6, we find that

the bias and MSEs of the parameter ν estimated via GMM1 and GMM2 become larger. The

quality of the estimates of the scale parameter σ at ν = 5 is very similar under ML and GMM1

particularly when the sample size is increased. With respect to estimates of σ via GMM2, we

find that the bias is somewhat larger in comparison to ML and GMM1. As in the case of the

MSM model with Normal innovations, the MSEs of σ increase for higher m0 while they are

more or less unchanged as we move from ν = 5 to ν = 6.

Table 2 displays the results of the Monte Carlo analysis of the MSM-t model with a setting

that makes ML estimation (at least in a Monte Carlo setting) computationally infeasible, that

is, the BMSM-t and LMSM-t models with k = 10. Simulation results for k = 15, 20 are

qualitatively similar and can be provided upon request. As in the previous experiments, the

simulations are performed with m0 = 1.3, 1.4, 1.5, ν = 5, 6 and the same logic is applied to

the LMSM model for which the location parameter of the continuous distribution is set to

λ = 0.05, 0.1, 0.15. Note that the admissible space for λ is λ ∈ [0,∞) and when the Lognormal

parameter hits its lower boundary at 0, the volatility process collapses to a constant. To save

on space, the simulations are only presented with T = 5, 000.

The results of the simulations indicate that the Binomial parameterm0 estimated via GMM1

or GMM2 are practically invariant to higher number of components k, both in terms of bias

and MSEs for the parameter values m0 = 1.3, 1.4, 1.5 and ν = 5. The bias and MSEs of m0

usually increase in GMM1 as we increase the degrees of freedom from ν = 5 to ν = 6. As in

the BMSM model with Normal innovations, the bias and the variability of σ increase with k as

it becomes more difficult to discriminate between very long-lived volatility components and the

constant scale factor (Lux, 2008). Bias and MSEs of the distributional parameter ν are found

to be relatively invariant for GMM1 and GMM2 when k = 10 in relation to k = 8 but they

increase for GMM1 and GMM2 as we move from ν = 5 to ν = 6. In the LMSM-t model, bias

and MSEs of λ at ν = 5 are somewhat larger for GMM1 than GMM2. As for the BMSM-t, bias

and MSEs of λ are relatively invariant for larger k buy they usually increase as we move from

ν = 5 to ν = 6.
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Summing up, the MC simulations for the in-sample performance of the MSM models with

Student-t innovations are similar to those of Lux (2008) for the Gaussian MSM model: while

GMM is less efficient than ML, it comes with moderate bias and moderate standard errors. The

efficiency of both GMM algorithms also appear quite insensitive with respect to the number of

multipliers.

insert Table 3 around here

3.2 Out-of-sample analysis

Table 3 shows the forecasting results from optimal forecasts (ML) and best linear forecasts

(GMM) of the BMSM-t model. The out-of-sample MC analysis is performed within the same

framework as the in-sample analysis when comparing ML and GMM procedures. That is, we set

k = 8 and evaluate the forecasts for the BMSM-tmodel with parametersm0 = 1.3, 1.4, 1.5, σ = 1

and ν = 5, 6. In our Monte Carlo experiments, we also imposed a lower boundary ν = 4.05 as a

constraint in the GMM estimates as otherwise forecasting with the Levinson-Durbin algorithm

would have been impossible.

In the forecasting simulations we set T = 10, 000 using 5, 000 entries for in-sample estimation

and the remaining 5, 000 entries for out-of-sample forecasting in order to compare them with

the results of the Gaussian MSM models in Lux (2008). The forecasting performance of the

models is evaluated with respect to their mean squared errors (MSE) and mean absolute errors

(MAE) standardized relative to the in-sample variance which implies that values below 1 indicate

improvement against a constant volatility model. Relative MSE and MAE are averages over

400 simulation runs.

The results basically show that, similarly as for the Gaussian MSM models, the loss in fore-

casting accuracy when employing GMM as opposed to ML is small particularly when compared

against GMM2. Thus, the lower efficiency of GMM does not impede its forecasting capabil-

ity in connection with the Levinson-Durbin algorithm. Both MSE and MAE measures show

improvement when the parameter m0 increases from 1.3 to 1.5, at least over short horizons.

Interestingly, we find that GMM2 based forecasts are even often better in terms of MAEs than

ML based forecasts for h ≥ 5 so that it appears entirely justified to resort to the computationally
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parsimonious GMM2 estimation and linear forecasts in our subsequent empirical part.

insert Table 4 around here

4 Empirical analysis

In this section we turn to the results of our empirical application to compare the in-sample and

out-of-sample performance of the different volatility models discussed previously. We follow a

similar approach to the panel empirical analysis of volatility forecasting performed for the Tokyo

Stock Exchange in Lux and Kaizoji (2007). However, here we concentrate on three new different

cross-sections of asset markets, namely, all-share stock indices (N = 25), 10-year government

bond indices (N = 11), and real estate security indices (N = 12) at the country level. The

sample runs from 01/1990 to 01/2008 at the daily frequency which leads to 4697 observations

from which 2,500 are used for in-sample estimation and the remaining observations for out-of-

sample forecasting. The data is obtained from Datastream and the countries were chosen upon

data availability for the sample period covered. Specific countries for each of the three asset

markets are presented in Table 4. In the following discussions we refer to statistical significance

at the 5% level throughout.

insert Tables 5 and 6 around here

4.1 In-sample analysis

For our in-sample analysis we account for a constant and an AR(1) term in the conditional mean

of the return data as in (2). Results of the Mean Group (MG) estimates of the parameters of

the (FI)GARCH and MSM models explained in previous sections are reported in Table 5 and

Table 6, respectively. Mean Group estimates are obtained by averaging individual market

estimates. We also report minimum and maximum values of the estimates obtained to have an

idea about the distribution of the parameters across the countries under inspection.

In the case of the GARCH model we find on average the typical magnitudes for the effect

of past volatility on current volatility (β̄) and of past squared innovations on current volatility
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(ᾱ) in all three markets (Table 5). The results are qualitatively the same with respect to the

estimates β̄ and ᾱ in the case of the GARCH-t. The distributional parameter (ν̄) is on average

greater than 4 in all three markets.

Taking into account long memory and Student-t innovations via the FIGARCH specification,

we find that there is typically a statistically significant effect of past volatility (β) and past

squared innovations (δ) on current volatility in all three markets. FIGARCH also provides

evidence for the presence of long memory as given by the MG estimate of the differencing

parameter d in the three cross-sections (Table 5). When we consider the FIGARCH-t we

find the same qualitative results for the average impact of the parameters β̄, δ̄ and d̄ as in

the FIGARCH and the same qualitative results of the distributional parameter ν̄ as with the

GARCH-t model.

In-sample estimation of the BMSM and LMSM models with Normal and Student-t innova-

tions is restricted to GMM since ML estimation with panel data is too demanding in compu-

tation time for k > 8. The estimation procedure for the MSM models consists in estimating

the models for each country in each of the stock, bond and real estate markets for a cascade

level of k = 10. The choice of the number of cascade levels is motivated by previous findings of

very similar parameter estimates for all k above this benchmark (Liu et al., 2007; Lux, 2008).

Note, however, that forecasting performance might nevertheless still improve for k > 10 and

proximity to temporal scaling of empirical data might be closer. Our choice of the specification

k = 10 is, therefore, a relatively conservative one. In our case, results for k = 15 and k = 20

are qualitatively the same as with k = 10. Details are available upon request.

For space considerations we only present the results of the MSM-t models estimated with the

second set of moment conditions (GMM2) given that we found that this set of moment conditions

produced more accurate forecasts in the Monte Carlo Simulations. We have also restricted the

parameter ν by using 4.05 as a lower bound in order to employ best linear forecasts. In any

case, we found very few instances where ν < 4 in both unrestricted (FI)GARCH and MSM

models.

With respect to the BMSM model, the Binomial parameter m0 is statistically different from

the benchmark case m0 = 1 in all three markets (Table 6). In the LMSM model, we also find
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that the Lognormal parameter λ yields a value that is statistically different from zero in all

three asset markets. In the case of the BMSM-t, the distributional parameter ν yields values

between (about) 4 and 7. Considering the LMSM-t we obtain similar qualitative results as for

the BMSM-t in terms of the average parameters σ̄ and ν̄.

Summarizing the in-sample results at the aggregate level, we find evidence of long-memory,

multifractality and fat tails in return innovations. It is also noteworthy, that in many cases, the

mean multifractal parameters m̄0 and λ̄ turn out to be different for the models with Student-t

innovations from those with Normal innovations. Since higher m0 and λ lead to more hetero-

geneity and, therefore, more extreme observations, we see a trade-off between parameters for the

fat-tailed innovations and those governing temporal dependence of volatility. What differences

these variations in multifractal parameters make for forecasting, is investigated below.

insert Tables 7 and 8 around here

4.2 Out-of-sample analysis

In this section we turn to the discussion of the out-of-sample results. Forecasting horizons are set

to 1, 5, 20, 50 and 100 days ahead. We have used only one set of in-sample parameter estimates

and have not re-estimated the models via rolling window schemes because of the computational

burden that one encounters with respect to ML estimation of the FIGARCH models. We have

also experimented with different subsamples but we have found no qualitative difference with

respect to the current in-sample and out-of-sample window split which is roughly about half for

in-sample estimation and half for out-of-sample forecasting.

In order to compare the forecasts across models we use the criterion of relative MSE and

MAE as previously mentioned. That is, the MSE and MAE corresponding to a particular model

are given in percentage of a naive predictor using historical volatility (i.e. the sample mean of

squared returns of the in-sample period). We also report the number of statistically significant

improvements of a particular model against a benchmark specification via the Diebold and

Mariano (1995) test. The latter test allows us to test the null hypothesis that two competing

models have statistically equal forecasting performance. Details about the computation of MSEs

and MAEs with panel data and corresponding standard errors and the count test based on the
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Diebold and Mariano (1995) statistics can be provided upon request.

4.2.1 Single models

Results of the average relative MSE and MAE and corresponding standard errors of the out-

of-sample forecasts from the different models are reported in Table 7. GARCH models (with

Normal or Student-t innovations) perform well at very short time horizons, but also show a

rapid deterioration in MSE and MAE measures for higher forecast horizons. This behavior is

to be expected as the exponential decay of GARCH autocorrelations leads to a relatively fast

convergence to a constant forecast with higher time horizons (which should be close to the

naive predictor). We have also experimented with the Threshold GARCH model (TGARCH)

of Rabemananjara and Zakoian (1993) to account for assymetries in volatility and found qual-

itatively similar results to those of the GARCH at long horizons. We do not provide detailed

results on the TGARCH model due to space constraints but can make them available upon

request. However, models that explicitly formalize long-term dependence of volatility should

perform better than GARCH over longer horizons. Indeed, MSE and MAE resulting from the

FIGARCH models (with Normal or Student-t innovations) are in general lower and more stable

across horizons.

With respect to the MSM models (with Normal or Student-t innovations) we find that they

produce MSEs and MAEs which are lower than one in all asset markets. Moreover, MSM models

produce lower average MSE and MAE than the GARCH and FIGARCH models in all three

asset markets at most forecasting horizons. In terms of MSE and MAE there is also a higher

frequency of improvements over historical volatility for MSM models (Table 8). Comparing

forecasts of the BMSM versus LMSM we find that the models produce qualitatively similar

forecasts in terms of MSEs and MAEs.

Diagnosing forecasts from the models with Normal vs. Student-t innovations, we find that

neither GARCH nor FIGARCH models produce lower MSEs and MAEs on average over the

three markets when Student-t innovations are employed. Results are different in MSM models

for which we find Student-t innovations to improve forecasting precision in terms of MAEs over

all three markets at most horizons. In fact, Table 8 shows that, in terms of MAEs, there is

18



a larger number of statistically significant improvements against historical volatility with the

BMSM-t and LMSM-t models in comparison to their Gaussian and (FI)GARCH counterparts.

Interestingly, the BMSM-t and LMSM-t outperform all other models in all markets in terms

of MAEs and they seem to provide for a sizable gain in forecasting accuracy at long horizons.

Consistently over all time horizons, LMSM-t comes first for stock and bond markets (with

BMSM-t ranking second) while BMSM-t is the dominant model for real estate (with LMSM-t

ranking second). In terms of MSEs, it is the Normal BMSM model that dominates in all asset

markets at most forecasting horizons.

Note that the MSM models also showed some sensitivity of parameter estimates on the

distributional assumptions (Normal vs. Student-t). As it seems, the volatility models react

quite differently to alternative distributions of innovations ut: on the one hand, the transition

to Student-t was not reflected in remarkable changes of estimated parameters for (FI)GARCH

models and their forecasting performance, if anything, slightly deteriorates under fat-tailed

innovations. On the other hand, the effect of distributional assumptions on MSM parameters

was more pronounced and their forecasting performance in terms of MAEs appears to be superior

under Student-t innovations throughout our samples. Taken together, we see different patterns

of interaction of conditional and unconditional distributional properties. This indicates that

alternative models may capture different facets of the dependency in second moments, so that

there could be a potential gain from combining forecasts (a topic explored below).

insert Tables 9 and 10 around here

4.2.2 Combined forecasts

A particular insight from the methodological literature on forecasting is that it is often preferable

to combine alternative forecasts in a linear fashion and thereby obtain a new predictor (Granger,

1989; Aiolfi and Timmermann, 2006). We analyze forecast complementarities of (FI)GARCH

and MSM models by addressing the performance of combined forecasts. The forecast combina-

tions are computed by assigning to each single forecast a weight equal to a model’s empirical

frequency of minimizing the absolute or squared forecast error over realized past forecasts. To

take account of structural variation we update the weighting scheme over the 20 most recent
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forecast errors so that despite linear combinations of forecasts, the influence of various compo-

nents is allowed to change over time via flexible weights. Technical details on the algorithm for

forecast combinations can be provided upon request.

Tables 9 and 10 report the results of the forecasting combination exercise. Our forecast

combination strategy consists in considering whether forecast combinations of (FI)GARCH

models, MSM models or both families of models lead to an improvement upon forecasts from

single models. Our results put forward that they generally do. This is in line with the empirical

result of Lux and Kaizoji (2007) that the rank correlations of forecasts obtained from certain

volatility models are quite low, hinting at the capacity of forecast combinations to improve upon

forecasts from single models.

We start by considering the results of forecast combinations of various (FI)GARCH mod-

els (Tables 9 and 10). Three different combination strategies denoted CO1, CO2 and CO3

are considered. The first combination strategy (CO1) is given by the (weighted) linear com-

bination between FIGARCH and FIGARCH-t forecasts. The latter combination gives an

idea how FIGARCH forecasts can be complemented by considering a fat tailed distribu-

tion. We find an improvement in terms of MSEs from CO1 over single forecasts of the FI-

GARCH and the FIGARCH-t models at most horizons in the different asset markets un-

der inspection. Results are qualitatively similar when we consider the forecast combinations

GARCH+FIGARCH+FIGARCH-t (CO2) and GARCH+GARCH-t+FIGARCH+FIGARCH-t

(CO3). The combinations CO2 and CO3 hint at how forecasts could be improved when com-

bining short memory with long memory and fat tails. In terms of MAEs, CO2 and CO3 can

improve upon forecasts of single (FI)GARCH specifications at higher horizons in all markets.

The second set of forecasts combinations considered are those resulting from the MSM

models. The forecast combinations are given by BMSM+LMSM-t (CO4), BMSM+BMSM-

t+LMSM-t (CO5) and BMSM+BMSM-t+LMSM+LMSM-t (CO6) to analyze the complemen-

tarities that arise when one combines MSM models with different assumptions regarding the

distribution of the multifractal parameter as well as the tails of the innovations. The results

indicate that there is an improvement upon forecasts of single models in all three markets

particularly in terms of MAEs. In general, results are qualitatively similar for the forecast
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combinations CO4, CO5 and CO6.

The last set of forecasts combinations examined are those resulting from MSM models and

FIGARCH models. The combinatorial strategies are given by FIGARCH+LMSM-t (CO7),

BMSM-t+LMSM-t+FIGARCH (CO8), BMSM-t+LMSM-t+FIGARCH+FIGARCH-t (CO9).

The latter forecast combinations allow us to analyze the complementarities of two families of

volatility models which assume two distinct distributions of the innovations along with dif-

ferent characteristics for the latent volatility process: (FI)GARCH models which account for

short/long memory and autoregressive components and MSM models which account for mul-

tifractality, regime-switching and apparent long memory. Interestingly, the improvement upon

forecasts of single models from the MSM-FIGARCH strategy is somewhat more evident than

in the previous strategies. In terms of MAEs, for instance, we generally find a statistically

significant improvement over historical volatility more frequently in stock, bond and real estate

markets when comparing CO7, CO8, CO9 against single models (Tables 8 and 10). We also find

that the variability of the forecast combinations obtained from MSM and FIGARCH does not

translate into much more variable MSEs or MAEs, a feature that speaks in favor of combining

forecasts from a multitude of models.

Summing up, we find that the forecast combinations between FIGARCH, MSM or both

types of models generally lead to improvements in forecasting accuracy upon forecasts of single

models. In particular, we find that the forecasting strategy FIGARCH-MSM seems to be the

most successful one in relation to single models or the other combination strategies - a feature

that could be exploited in real time for risk management strategies. The particular usefulness of

this combination strategy appears plausible given the flexibility of the MSM model in capturing

varying degrees of long-term dependence and the added flexibility of FIGARCH for short horizon

dependencies via its AR and MA parameters which are not accounted for in MSM models.

5 Conclusion

In this paper we introduce a new member to the family of MSM models that accounts for fat

tails by means of Student-t innovations. The MSM-t model can be estimated either via ML
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or GMM. Forecasting can be performed via Bayesian updating (ML) or best linear forecasts

together with the generalized Levinson-Durbin algorithm (GMM). The suitability of ML and

GMM estimation for MSM models with Student-t innovations is analyzed via Monte Carlo sim-

ulations. To evaluate the new MSM-t model empirically, we conduct a comprehensive study

using country data on all-share equity indices, 10-year government bond indices and real es-

tate security indices. We consider two major sets of “competitors”, namely, the MSM models

with Normal innovations and the popular (FI)GARCH models along with Normal or Student-t

innovations. In addition, we explore forecast complementarities by constructing forecast com-

binations of the various models considered, which incorporate different features characterizing

the latent volatility process (short/long memory, regime-switching and multifractality) as well

as distributional regularities of returns (fat tails).

In-sample Monte Carlo experiments of the MSM-t model behave similarly like the MSM

model with Normal innovations indicating that ML and GMM estimation are both suitable for

estimating the new Binomial (ML and GMM) and Lognormal (GMM) MSM-t models. The

out-of-sample Monte Carlo analysis shows that best linear forecasts are qualitatively similar

to optimal forecasts so that the computationally advantageous strategy of GMM estimation

of parameters plus linear forecasts can be adapted without much loss of efficiency. The in-

sample empirical analysis shows, as expected, that there is strong evidence of long memory

and multifractality in international equity markets, bond markets and real estate markets as

well as evidence of fat tails. The out-of-sample empirical analysis puts forward that GARCH

models are less precise in accurately forecasting volatility for horizons greater than 20 days.

This problem is not encountered once long-memory is incorporated via the MSM or FIGARCH

models which produces MSEs and MAEs that are generally less than one.

The recently introduced MSM models with Normal innovations produce forecasts that im-

prove upon historical volatility and upon FIGARCH with Normal innovations in terms of MSEs.

Moreover, two additional observations shed more positive light on the capabilities of MSM mod-

els for forecasting volatility. First, adding fat tails typically improves forecasts from MSM mod-

els in terms of MAEs while the same change of specification has, if anything, a negative effect

for the (FI)GARCH models. While MSM-t is somewhat inferior to the MSM and FIGARCH
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models with Normal innovations under the MSE criterion, it is superior under the MAE cri-

terion at long horizons across all markets and models. Second, our forecasting combination

exercise showed gains from combining FIGARCH and MSM in various ways. Therefore, both

models appear to capture somewhat different facets of the latent volatility and can be sensibly

used in tandem to improve upon forecasts of single models.
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Equity Markets Bond Markets Real Estate Markets

Austria Italy Australia Austria
Argentina Norway Belgium Canada
Belgium Mexico Canada France
Canada New Zealand Denmark Germany
Chile Japan France Italy
Denmark South Africa Germany Japan
Finland Spain Ireland New Zealand
France Sweden Netherlands Spain
Germany Thailand Sweden Sweden
Greece Turkey United Kingdom United Kingdom
Hong Kong United Kingdom United States United States
India United States South Africa
Ireland

Table 4: Equity, Bond and Real Estate markets for the empirical analysis. Countries were
chosen upon data availability for the sample period 01/1990 to 01/2008. We employ Datastream
calculated (total market) stock indices, 10-year benchmark government bond indices and real
estate security indices.
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