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1 Introduction

"The matching function is a modeling device that occupies the same place in
the macroeconomist’s tool kit as other aggregate function, such as the

production function (. . . ). Like the other aggregate functions its usefulness
depends on its empirical viability and on how successful it is in capturing the

key implications of heterogeneities and frictions in macro models."
(Petrongolo and Pissarides, 2001, 391-392)

It is conventional practice to model job creation by assuming a Cobb-Douglas
contact/matching function with constant returns to scale (CRS).1 The parame-
trization of the contact function is usually guided by estimations based on data
for matches, vacancies and unemployment. Many papers also assume that the
creation of jobs is influenced by match-specific idiosyncratic productivity, i.e.
only worker-firm pairs above a certain productivity threshold are formed.2 In
addition, the free entry of vacancies or firms is a standard assumption in mod-
ern labor market models such as Mortensen and Pissarides (1994) or Pissarides
(2000).

This paper revisits the matching function from two perspectives. First, we
show that in a wide class of models the combination of idiosyncratic productiv-
ity and free entry of vacancies generates an equilibrium comovement between
matches on the one hand and unemployment and vacancies on the other hand,
which is observationally equivalent to the empirically observed matching func-
tion correlation. Thus, many papers would be able to replicate one of the most
important stylized fact of the labor market, even without using a traditional
contact function.

Second, we show that the combination of idiosyncratic shocks and a tradi-
tional Cobb-Douglas (CRS) contact function increases the weight on vacancies
relative to the assumed contact function. Why is this important? From an
empirical perspective our paper sounds a cautionary note on using matching
function estimations in order to parameterize contact functions in theoretical
models. If idiosyncratic productivities play a role for job creation, matching
function estimations lead to biased results for the elasticity of the actual con-
tact function with respect to vacancies and unemployment. In addition, our
paper has important theoretical implications. From a normative perspective it
is well known that the Hosios (1990) rule internalizes search externalities and
thus provides constrained efficiency. However, if the estimated elasticities of
the matching function are misspecified, Hosios rule does not provide guidance

1In what follows, "contact function" refers to the theoretical function that establishes
contacts between workers and firms. Due to idiosyncratic shocks, not all of the contacts may
become matches. "Matching function" refers to the empirical connection between matches on
the one hand and vacancies and unemployment on the other hand.

2For a seminal contribution with idiosyncratic productivity see Jovanovic (1979). For a
recent proposition see Brown et al. (forthcoming). Traditional search models (e.g. McCall,
1970; Mortensen, 1987) rely on exogenous wage distributions. If they are interpreted as the
result of some underlying idiosyncratic productivity heterogeneity, they fall into the same
category of models. In addition, there are many papers that combine a contact function, a
vacancy free entry condition and idiosyncratic productivity (e.g. Krause and Lubik, 2007).
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whether unemployment is inefficiently high or low. In addition, it may be dif-
ficult to judge how certain policy interventions affect welfare. From a positive
perspective, policies or technological changes that act via the vacancy posting
margin – for instance a vacancy posting subsidy or new technologies that reduce
vacancy posting costs – may have a much smaller effect.

We are the first to show that the combination of free entry of vacancies
and idiosyncratic productivity generates a linear comovement between the job-
finding rate and market tightness, which is observationally equivalent to the
conventional Cobb-Douglas CRS matching function (see Petrongolo and Pis-
sarides, 2001, for a review). In different words, in a model with some kind of
idiosyncratic productivity and free entry of vacancies there will be a conven-
tional matching function correlation pattern on top of the correlation that is
already captured by the contact function in place. We show that this pattern
emerges even in an extreme scenario with a degenerate contact function where
the probability of a worker to make a contact does not depend on the aggregate
number of vacancies. What is the underlying mechanism? Under a positive
aggregate productivity shock, firms have an incentive to hire workers with lower
idiosyncratic productivity. Thus, the job-finding rate rises. In addition, a pos-
itive productivity shock increases the returns from posting a vacancy. Thus,
firms compete for the larger pie of profits, more of them enter the market and
thus increase the market tightness in the economy. These two effects combined
lead to a positive equilibrium movement between the job-finding rate and market
tightness.

We use German administrative labor market data in order to assess whether
this mechanism is quantitatively meaningful. We calibrate the idiosyncratic
productivity distribution in our model from individual wage data which allows
us to infer an elasticity of matches with respect to vacancies. This elasticity
is very close to the corresponding coefficient in a standard matching function
estimation. Our results suggest that the interplay of idiosyncratic productivity
and free entry of vacancies is an important driver of the matching function
correlation usually found in the data. In addition, we show that if idiosyncratic
productivity matters for match formation, the contact function in the model
and the empirical matching function obtained from standard regressions (see
e.g. Blanchard and Diamond, 1990) will diverge.

The rest of the paper proceeds as follows. Section 2 derives a simple model
with idiosyncratic productivity and free entry of vacancies. In this version, id-
iosyncratic shocks hit only in the first period of employment. However, all our
results extend to more general cases such as models with endogenous separa-
tions and permanent idiosyncratic productivity differences. Section 3 derives
an analytical expression for the equilibrium comovement of the job-finding rate
and the market tightness in this framework. We start with a degenerate con-
tact function with no role for vacancies in contact creation as this allows us to
isolate the effect of idiosyncratic productivity. Our analysis reveals a connec-
tion between the shape of the idiosyncratic productivity distribution and the
corresponding matching function correlation. This allows us in Section 4 to use
an empirical wage distribution to check quantitatively how important idiosyn-
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cratic shocks are for the aggregate matching function correlation. We compare
our equilibrium matching function correlation to a conventional Cobb-Douglas
CRS matching function estimation. Interestingly, the two are very close. Thus,
idiosyncratic productivity and free entry of vacancies may drive a large part of
the comovement between the job-finding rate and the market tightness in the
data. Finally, we combine a non-degenerate contact function with our calibra-
tion for the idiosyncratic productivity. We show that the bias in the estimated
matching function due to idiosyncratic productivity is substantial. Therefore,
it is important to understand the underlying mechanism.

2 A Simple Model

2.1 Model Environment

Our economy is populated with a continuum of workers who can either be
employed or unemployed. Employed workers are separated with an exogenous
probability φ. Unemployed workers search for a job. We assume that they get
in contact with a firm with probability pt ≤ 1. The contact probability may
either be driven by a standard contact function as in Mortensen and Pissarides
(1994) and Pissarides (2000) or it may be degenerate, as standard in search
models (e.g. McCall, 1970; Mortensen, 1987) or as assumed in selection models
(Brown et al., forthcoming; Lechthaler et al., 2010).

When unemployed workers get in contact with a firm, they draw an idiosyn-
cratic productivity realization εit, i.e. some workers are more productive than
others. This nests the case of search and matching models where endogenous
separations hit before production takes place (e.g. Krause and Lubik, 2007) or
the stochastic job matching model (Pissarides, 2000, chapter 6). Firms will
only hire workers when the productivity realization, εit, is at least as large as
the cutoff productivity ε̃t, that makes a firm indifferent between hiring and not
hiring. For illustration purposes, we start with a model where idiosyncratic
productivity shocks are only drawn in the first period of employment. However,
this assumption is without loss of generality. We show analytically in the Ap-
pendix that we obtain the same results for two additional polar cases. First,
when we assume that the idiosyncratic shock, ε, is redrawn every period (both
for new contacts and for existing matches) and iid across workers and time.
Second, when we assume that ε is only drawn when a new contact is made, but
it remains the same for the entire period of employment.

Firms have to post vacancies to obtain a share of the economy wide appli-
cants (namely, the firm’s vacancy divided by the overall number of vacancies,
which is determined by a free-entry condition). With a traditional contact
function, more vacancies lead to more contacts. By contrast, with a degenerate
contact function, more vacancies do not lead to more contacts. To illustrate
our point, we will start with a degenerate contact function and show afterwards
how a traditional contact function affects our results.
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2.2 Contacts

Contacts are assumed to follow a Cobb-Douglas function with CRS

ct = µvγt u
1−γ
t , (1)

where ct denotes the overall number of contacts, µ is the contact efficiency, and
ut and vt are beginning of period unemployment and vacancies respectively. The
contact probability for a worker is thus pt = µθγt and the contact probability
for a firm qt = µθγ−1

t = pt/θt, where θt = vt/ut denotes market tightness. With
γ = 0 the contact function is degenerate in the sense that more vacancies do not
lead to more contacts and jobs in the aggregate. This simplifying assumption
will be the starting point for our analysis in Section 3.

2.3 The Selection Decision

Once a contact between a searching worker and the firm has been established,
firms decide whether to hire/select a particular worker or not. There is a random
worker-firm pair specific idiosyncratic productivity shock, εit, which is iid across
workers and time3, with density function f (εt) and the cumulative distribution
F (εt). εt is observed by the worker and the firm. Thus, the expected discounted
profit, πE

t (εt), of hiring an unemployed worker is equal to the current aggregate
productivity minus the current wage (which may be a function of ε), wt (εt),
plus the idiosyncratic productivity shock, εt, plus the expected discounted future
profits:

πE
t (εt) = at + εt − wt (εt) + δ (1− φ)Et (πt+1) , (2)

with

πt = at − wt + δ (1− φ)Et(πt+1), (3)

where δ is the discount factor and φ is the exogenous separation probability.
In the baseline scenario, incumbent worker-firm pairs are not subject to id-
iosyncratic productivity shocks, i.e. there is no εt and the wage for existing
worker-firm pairs is not dependent on any idiosyncratic shock realization.

The firm selects an unemployed worker whenever there is an expected posi-
tive surplus:

ε̃t = wt (εt)− at − δ (1− φ)Et (πt+1) . (4)

Thus, the selection rate is given by:

ηt =

∫

∞

ε̃t

f (ε) dε. (5)

3Due to the iid assumption, we abstract from the worker-firm pair specific index i from
here onward.
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2.4 Vacancies

As in Pissarides (2000, chapter 1), we assume that each vacancy corresponds to
one firm. For entering the market, firms have to pay a fixed vacancy posting
cost κ. The value of a vacancy Ψ is

Ψt = −κ+ qtηtEt

[

πE
t |εt ≥ ε̃t

]

+ (1− qtηt) Ψt, (6)

where qt = ct/vt is the probability that a vacancy, vt, leads to a contact, ct (i.e.
overall contacts divided by overall vacancies). Thus:

Ψt = −κ+qtηt

(

at +

∫

∞

ε̃t
(εt − w (εt)) f (εt) dεt

ηt
+ δ (1− φ)Et (πt+1)

)

+(1− qtηt) Ψt,

(7)
Firms will post vacancies up to the point where the value is driven to zero

(free entry condition), i.e.

κ

qtηt
= at +

∫

∞

ε̃t
(εt − w (εt)) f (εt) dεt

ηt
+ δ (1− φ)Et (πt+1) . (8)

It is straightforward to see that the model nests the standard matching
model where all workers are selected (i.e. with no role for idiosyncratic shocks),
by setting ηt = 1 and εt = 0. In this case, the right hand side is at − wt +
δ (1− φ)Et (πt+1) = at − wt + δ (1− φ)Et

κ
qt+1

.

Note that even in the case of a degenerate contact function, it is perfectly
rational for firms to enter the market. Under a positive aggregate productivity
shock, the expected returns of hiring a worker increase. Thus, more firms will
enter the market to compete for these profits until the free-entry condition holds
again. This makes vacancies procyclical.

2.5 Wages

We assume that a larger idiosyncratic productivity shock leads to a proportion-
ally larger wage:

w (εt) = wt + αεt, (9)

where α is the proportional component. wt is the wage net of contemporaneous
εt realization (i.e. the wage that holds in future periods if there are no future
idiosyncratic shocks). wt may be a function of current and future variables
such as aggregate productivity, market tightness, future expected cutoff points
or unemployment benefits, but not the current idiosyncratic productivity real-
ization. Thus, our wage equation is very general and also nests standard Nash
bargaining, i.e. a privately efficient wage formation.
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2.6 Employment

We assume an economy with a fixed labor force L, which is normalized to 1.
Thus, the employment stock is equal to the employment rate, n. Thus, the
employment dynamics in this economy is determined by

nt+1 = (1− φ− ptηt)nt + ptηt. (10)

The number of searching workers is thus equal to the number of unemployed
workers at the beginning of period t, i.e.

ut = 1− nt. (11)

2.7 Labor Market Equilibrium

The labor market equilibrium consists of the equations for firms’ profits (3),
the productivity cutoff point (4), the selection rate (5), the vacancy free entry
condition (8), the contact function (1), the wage equation (9), the employment
dynamics equation (10) and the definition of unemployment (11).

3 Analytics

This section shows analytically that our simple model with idiosyncratic pro-
ductivity shocks and free entry of vacancies generates an equilibrium matching
function relationship. We prove for a degenerate contact function that the es-
timated weight on vacancies in this matching function correlation is described
by the first derivative of the expected idiosyncratic productivity shock. We il-
lustrate the implications for different distributions and cutoff points. In a next
step, we show how our results differ for a non-degenerate contact function. Fi-
nally, we check for the robustness of our results. To obtain analytical results,
all derivations in this section are based on a steady state version of our model,
i.e. we assume that there is no aggregate uncertainty and we analyze the reac-
tion of the job-finding rate and vacancies with repect to permanent changes in
aggregate productivity.

3.1 Degenerate Contact Function

For illustration purposes, we start with a degenerate contact function (γ = 0).
The matching function correlation (i.e. the connection between the job-finding
rate and market tightness) can be described by three equations, namely the
hiring cutoff point ε̃, the job-finding rate η, and the market tightness, defined
as θ = v/u:

ε̃ =
w − a

(1− δ (1− φ)) (1− α)
, (12)
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η =

∫

∞

ε̃

f (ε) dε, (13)

θ =
pη

κ

(

a− w

(1− δ (1− φ))
+

(1− α)
∫

∞

ε̃ εf (ε) dε

η

)

. (14)

In standard empirical matching function estimations, the job-finding rate
(jfr) is regressed on the market tightness, where β1 shows how strongly the
job-finding rate and the market tightness comove in percentage terms, namely:

ln jfrt = ln ptηt = βo + β1 ln θt + ǫt, (15)

where β1 is the elasticity of matches with respect to vacancies in a Cobb-Douglas
CRS specification.

The job-finding rate and market tightness are both functions of productivity.
By deriving the elasticity of the job-finding rate with respect to productivity
and by deriving the elasticity of market tightness with respect to productivity4,
we obtain an analytical expression for the empirical elasticity of the job-finding
rate with respect to market tightness5, namely:

∂ ln (pη)

∂ ln a
=

−a ∂ε̃
∂af (ε̃)

η
, (16)

∂ ln θ

∂ ln a
=

− ∂ε̃
∂aa (1− α)

(

a−w
(1−δ(1−φ)) +

(1−α)
∫

∞

ε̃
εf(ε)dε

η

) . (17)

Thus:

∂ ln (pη)

∂ ln θ
=
f (ε̃)

η

(

∫

∞

ε̃
εf (ε)dε

η
− ε̃

)

. (18)

It is important to emphasize that the comovement of the job-finding rate and
market tightness in equation (18) is not a causal relationship. More vacancies
do not generate more contacts and jobs in aggregate. However, the model with
idiosyncratic shocks and free entry of vacancies generates a positive equilibrium
comovement between the job-finding rate and market tightness.

What is the underlying economic mechanism and intuition? When aggregate
productivity rises, firms have an incentive to hire workers with lower idiosyn-
cratic productivity. Thus, the job-finding rate is clearly procyclical. When
productivity rises, this also increases the returns from posting a vacancy. Thus,
firms compete for the larger pie of profits, more of them enter the market and

4See Technical Appendix for details.
5Note that Merkl and van Rens (2012) show that the job-finding rate and its dynamics are

isomorphic in a model with idiosyncratic training costs (under a Pareto distribution) and in
the search and matching model. However, their model does not contain any vacancies and is
thus silent on the shape of the matching function.
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thus increase the market tightness in the economy. These two mechanisms com-
bined lead to a positive equilibrium comovement between the job-finding rate
and the market tightness.

Interestingly, the matching function correlation in equation (18) corresponds
to the first derivative of the conditional expectation of idiosyncratic productiv-
ity:

∂
∫

∞

ε̃
εf(ε)dε

η

∂ε̃
=
f (ε̃)

η

(

∫

∞

ε̃ εf (ε) dε

η
− ε̃

)

=
∂ ln (pη)

∂ ln θ
. (19)

Thus, up to a first order Taylor approximation, the comovement between
the job-finding rate and the market tightness is determined by equation (19).
The quality of this approximation will be checked numerically in Section 4.

Figure 1 illustrates the prediction of our model for different distributions.
The upper panel plots the density functions of ε for normal, logistic and lognor-
mal distributions and the lower panel plots the first derivative of the conditional
expectation of ε with respect to different cutoff points, i.e. the implied weight on
vacancies. Two observations are worth pointing out. First, for these standard
distributions the weight on vacancies is always between 0 and 1. Second, when
the cutoff point is at the left hand side of the peak of the density function, the
first derivative of the conditional expectation (i.e. the weight on vacancies) is
smaller than 0.5, while it is larger than 0.5 on the right hand side. This will
be important later on when we compute a model implied matching function
correlation with the help of an empirical wage distribution.

Why does the matching function correlation have a weight larger than 0.5
on the right hand side of the peak of the density function and a weight smaller
than 0.5 on the left hand side? The reason is that market tightness is driven
by the free entry condition of vacancies (see equation (14)). When aggregate
productivity increases, workers with lower idiosyncratic productivity are hired,
i.e. the hiring cutoff moves to the left. On the left hand side of the peak of
the density function, a small mass of additional workers with low idiosyncratic
productivity will be hired. Thus, vacancies move by a lot because the addi-
tional hiring activity does not lower the average idiosyncratic productivity by
much. Large vacancy movements relative to the job-finding rate lead to a small
estimated coefficient in equation (15).

3.2 Traditional Contact Function

Now, let us assume a traditional contact function with 0 < γ < 1. In this case,
the probability for a worker to make a contact (p = c/u) depends on aggregate
productivity. In our real business cycle framework, we thus expect a procyclical
movement of the contact rate ( ∂p∂a > 0).

To analyze the implications of this modification, we recalculate the elasticity
of the job-finding rate with respect to market tightness:
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Figure 1: Predicted matching coefficients for standard distributions
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∂ ln (pη)

∂ ln a
= −

af (ε̃) ∂ε̃
∂a

η
+
∂ ln p

∂ ln a
, (20)

∂ ln θ

∂ ln a
=

− ∂ε̃
∂aa (1− α)

(

a−w
(1−δ(1−φ)) +

(1−α)
∫

∞

ε̃
εf(ε)dε

η

) +
∂ ln p

∂ ln a
. (21)

The elasticities of the job-finding rate and market tightness with respect
to productivity are the elasticities with a fixed contact rate plus the elasticity
of the contact rate with respect to productivity. Defining ξjfr/θ = ∂ ln jfr

∂ ln θ ,

ξη/a = −
af(ε̃) ∂ε̃

∂a

η , ξθ/a =
−

∂ε̃
∂aa(1−α)

(

a−w
(1−δ(1−φ))

+
(1−α)

∫

∞

ε̃
εf(ε)dε

η

) and ξp/a = ∂ ln p
∂ ln a , we can

write the elasticity of the job-finding rate with respect to market tightness as:

ξjfr/θ =
ξη/a + ξp/a
ξθ/a + ξp/a

. (22)

Taking first derivatives allows us to see how this elasticity changes with a pro-
cyclical contact rate:

∂ξjfr/θ

∂ξp/a
=

ξθ/a − ξη/a
(

ξθ/a + ξp/a
)2 . (23)

In the previous section, we have shown that for a variety of standard assump-
tions and cutoff points, the elasticity of the selection rate with respect to market

tightness is smaller than 1 (
ξη/a

ξθ/a
< 1). Thus, the numerator of (23) is positive,

and
∂ξjfr/θ

∂ξp/a
> 0, i.e. a stronger procyclicality of the contact rate increases the

weight of vacancies in an estimated matching function. In different words: If
both a traditional contact function and idiosyncratic shocks are important for
match formation, both of them contribute to a positive weight on vacancies in
an estimated matching function.

3.3 Robustness Checks

The model we have derived so far is most similar to the selection model by
Brown et al. (forthcoming). However, our results hold for a broad set of models
that contain idiosyncratic productivity shocks. The Technical Appendix shows
that we obtain the same analytical results in a search and matching model
with endogenous separations (where iid shocks hit every period) and in a model
where idiosyncratic shocks are drawn for the entire span of employment. In all
these cases, the first derivative of the expected idiosyncratic productivity shock
corresponds to the matching function correlation that we would observe in the
absence of a traditional contact function.
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4 Theory and Evidence

Our analytical results put us in a position to use wage data as a proxy for the
idiosyncratic productivity shocks to calculate the model implied weight on va-
cancies. We first establish a reference point by estimating an empirical matching
function. We then proceed to calibrate the steady state model with individual
wage data. For a degenerate contact function we can thus directly calculate
the model implied matching function. We also simulate the dynamic model and
estimate a matching function from the simulated data. The simulation allows
us to test for the quality of our steady state approximation and for the constant
returns to scale assumption. In addition, we check how a traditional contact
function has to look like in order to obtain the same elasticity of matches with
respect to vacancies as in empirical estimations.

For all these exercises, we use administrative labor market data for Germany
(see e.g. Dustmann et al., 2009; Schmieder et al., 2012). The German adminis-
trative database has several advantages over commonly used U.S. data. First, it
provides actual labor market transitions on a daily basis. This means that we do
not have to construct labor market flows from unemployment, employment and
duration data and we do not face the problem of a time aggregation bias (see,
e.g., Shimer, 2005, 2012; Nordmeier, 2012). Second, we can use several control
variables that might influence the search and matching process. Third, we can
observe wages for new matches. Importantly, these wages are from the same
database that we construct our flow data from. Finally, we have real vacancies
instead of a job advertising index for longer time series.6

4.1 Empirical Matching Function

We estimate a standard Cobb-Douglas CRS matching function for the German
labor market. Thus, we regress the job-finding rate jfr on labor market tight-
ness θ, a linear time trend t, and a shift dummy, d2005, which accounts for the
redefinition of unemployment in course of the so-called Hartz reforms:7

log jfrt = β0 + β1 log θt + β2t+ β3d2005 + ψt, (24)

where the job-finding rate at time t denotes all matches during month t over
the beginning-of-month-t unemployment stock and market tightness refers to
the beginning-of-month-t vacancy to unemployment ratio. The coefficient β1
represents the matching elasticity with respect to vacancies and thus is the
relevant reference point for our numerical exercises below.

We further include observable control variables to account for the effects of
a changing unemployment pool and different search intensities on the aggregate
matching probability.8 Table 1 displays the estimation results of the matching

6See Appendix B for a detailed data description.
7In 2005, the official unemployment measure in Germany was extended to include recipients

of former social assistance.
8It is well known that there is duration dependence of individual job-finding rates. Recent

research by Hornstein (2012) and Barnichon and Figura (2011) suggests that this may be due
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Table 1: Matching function estimations

jfr (1) (2)

constant -2.3498*** -4.3403**
log θ 0.2458*** 0.3463***
t -0.0003*** -0.0054**
d2005 -0.0798*** -0.0766
controls no yes
adj. R2 0.5134 0.6162
DW statistic 1.3664 1.8407
CRS t-statistic 1.0074 1.6141
Note: OLS estimations (1993-2007). ***, ** and *
indicate significance at the 1%, 5% and 10% levels.
Control variables: long , young, old, low-skilled,
high-skilled, foreign, female, married, child, UB
I.

function specification with and without control variables. Both estimations show
a fairly good fit in terms of the adjusted R2 measure. However, the Durbin-
Watson statistic indicates that it is important to control for the composition
of the unemployment pool because this specification overcomes the positive
autocorrelation in the error term.9 The point estimate of β1 in our preferred
specification is 0.35 and the 95% confidence interval spans from 0.23 to 0.46.
The matching elasticities of vacancies and unemployment are thus roughly one
third and two thirds, respectively. These results are in line with the survey of
matching function estimations by Petrongolo and Pissarides (2001). Moreover,
the constant returns to scale assumption cannot be rejected.

4.2 Model Implied Matching Function

How closely does a model with a degenerate contact function but with free en-
try of vacancies and idiosyncratic productivity match the estimated matching
function? To test for this, we use the wage distribution of the German admin-
istrative data for new matches to infer the shape of the actual distribution of
idiosyncratic productivity at the cutoff point.10

We have assumed that wages are formed according to w (εt) = wt + αεt,
where wt contains aggregate components (e.g. current and future market tight-
ness) and εt represents match-specific idiosyncratic productivity. Given that
this wage formulation nests Nash bargaining, this is a standard assumption.
We will use the proportionality between contemporaneous idiosyncratic pro-
ductivity and the wage for our empirical analysis.

to composition effects of the unemployment pool. Katz and Meyer (1990) find evidence for
an influence of unemployment benefit receipt on workers’ job acceptance behavior.

9We also performed an IV estimation to account for an endogeneity problem in specification
(1), but the coefficients did not change notably. The results of the IV estimation are available
on request.

10See Appendix B for a description of the wage data.
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We focus on wages of a homogeneous reference group as we are not interested
in wage differentials that can be explained by observable characteristics such as
education, gender or unemployment history. We choose the following baseline
group: male, German, not married, no children, age 25-55, medium skilled
and short-term unemployed (before being hired). For comparability reasons,
we restrict our attention to full-time employment.11 As a robustness check we
report results for various other group compositions in the Appendix.

Our proportionality assumption allows us to infer the shape of the distri-
bution of the idiosyncratic productivity directly from the wage data. In line
with our baseline model, we only use wages at the start of an employment spell.
The histogram of wages is displayed in Figure 2. When equation (9) holds,
idiosyncratic productivity is just a scaled version of this distribution.12

Figure 2: Distribution of real daily wages
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Notes: Wages are real daily gross wages of new job entrants with the following characteris-

tics: male, German, full-time employed, not married, no children, age 25-55, mediums skilled

(Hauptschule or Realschule plus vocational training), short-term unemployed.

We only observe part of the distribution, namely the realizations of produc-
tivity that result in a hire. As our model would predict, the distribution looks
truncated on the left side where we expect the cutoff productivity, whereas the
distribution of wages flattens out smoothly on the right side for the workers
with high idiosyncratic productivity. This truncation is not taken into account
when we fit the distribution to the data. Fortunately, all that is relevant for our
results is the shape of the distribution at the cutoff point. All that we require
is thus some smoothness of the distribution at the hiring cutoff.

11Controlling for year fixed effects does not alter our results.
12Note that the scaling does not affect the shape of the distribution at the respective cutoff

point and does not affect the calculation of equation (19).
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According to our model, the relevant cutoff productivity would be deter-
mined by the lowest reported wage. In our data this wage is just below 17 Euro
per calender day. In order to rule out that our results are driven by outliers we
set the cutoff point at the 1st, 5th and 10th percentiles of the wage distribution.
These correspond to daily gross wages of 26, 33 and 37 Euro respectively. It is
quite standard in the literature to use the 10th percentile as a minimum wage
measure. For example, the mean-min ratio, which corresponds to the 50th to
10th percentile ratio, is a conventionally used measure for wage dispersion (see
e.g. Hornstein et al., 2011).

We fit the data non-parametrically using a kernel density estimation with
a normal kernel (see Figure 2) and numerically calculate the derivative of the
conditional expectation using equation (19). This gives us the numbers for the
elasticity of matches with respect to vacancies. Based on the wage distribution,
it is 0.12, 0.28, and 0.38 for the 1st, 5th, and 10th percentile, respectively (see
Table 2). These model based numbers already come remarkably close to our
empirical data estimate of 0.35. This is particularly interesting, given that these
results are based on a degenerate contact function so far, where vacancies do
not affect the aggregate number of contacts.

Table 2: Weight on vacancies, based on steady state approximation

1st percentile 5th percentile 10th percentile

log θ 0.12 0.28 0.38
Note: Results are calculated numerically from the non-parametric fit of the dis-
tribution using equation (19).

Before we move to the dynamic analysis, it is worthwhile discussing some
potential pitfalls of our analysis:

First, wage differentials may be driven by other factors than observables or
idiosyncratic productivity, namely luck. This would change our wage equation
to w (εt) = wt + αεt + ιt, where ιt is the luck component. But as long as there
is no systematic correlation between εt and ιt, the luck component simply adds
noise to our analysis, but the results remain valid.

Second, collective bargaining is still the predominant wage formation mech-
anism in Germany. If collective bargaining prevents that idiosyncratic produc-
tivity differentials show up in the wage, our analysis is not valid. However,
collective bargaining only defines a lower bound for the wage. If a worker with
certain characteristics is particularly productive, firms can easily pay a higher
wage. In addition, firms have a certain discretion into which payscale they want
to classify a particular worker (i.e. a worker with a lower idiosyncratic produc-
tivity can be assigned to a lower payscale). Beyond this, collective bargaining
has lost importance over the last decades. However, controlling for year fixed
effects in our wage distribution does not alter our results.

Third, we may have chosen our homogeneous reference group inappropri-
ately. In particular, we may have defined it too broadly. Here, we face of
course a trade off between the number of observations and a narrower group
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definition.13 Therefore, we repeat the dynamic simulation for a set of different
reference groups (in particular a finer differentiation along age and education).
The results can be found in the Appendix and are fairly similar. We are therefore
confident that our results are not driven by the choice of the reference group. In
addition, the results in the Appendix show that our preferred reference group
represents an intermediate case with respect to the range of estimates.

4.3 Dynamics

So far, the results have been based on our comparative static equation. In
order to test for the validity of our results out of steady state, we now simulate
the model with shocks to aggregate productivity. This also allows us to check
whether non-constant returns to scale are present in the simulated data. Most
importantly, we can use the dynamic simulation to quantitatively assess the
interplay between a traditional contact function and idiosyncratic productivity.

For the dynamic simulation, we need to parameterize our model. In par-
ticular, we need to define a functional form for the idiosyncratic productivity
distribution. We therefore fit several standard distributions to the data, i.e.
we choose the parameters of the distributions that give the best fit of our data
in terms of maximum likelihood. We choose the logistic distribution because
it has the best fit. Figure 2 displays the distribution of real daily gross wages
and the corresponding logistic distribution. The match is reasonably good es-
pecially near the cutoff.14 We provide all other details on the parametrization
in Appendix D. We simulate the model 1000 times with aggregate productivity
governed by a first-order autocorrelation process. The simulation is based on
a second-order Taylor approximation.15 Each time we use 180 periods corre-
sponding to the time span used for our empirical matching function estimation.

Again, we estimate a Cobb-Douglas CRS matching function:

log jfrt = β0 + β1 log θt + ψt. (25)

Table 3 compares the estimated coefficient β1 for different quantiles to the
comparative static results when we use equation (19) for the same purpose.
The numbers from the simulation exercise and the comparative static exercise
are literally the same. This shows that our comparative statics is a very good
approximation for the dynamic exercise. Note that the discrepancy between the
results in this section and the previous section only stem from the imperfect fit
of the logistic distribution compared to the non-parametric fit.

13In addition, if we choose a too narrow subgroup, it may be difficult to make an inference
for the aggregate matching function.

14The fit of course ignores the truncation of wages on the left hand side. In addition, we
enforce a specific mass and shape for the part of the wages that we do not observe. This is
without loss of generality as the non-observable part of the distribution does not affect our
results as long as there is no sharp discontinuity in the vicinity of the cutoff. We are therefore
confident that the logistic distribution provides a reasonable approximation for our purposes.

15This explicitly allows for some non-linearities not covered by our analytical steady state
results.
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Table 3: Matching function based on simulation (degenerate contact function)

1st percentile 5th percentile 10th percentile

Simulation result
constant -2.88 -2.79 -2.69
log θ 0.14 0.22 0.28

Simulation result (unconstrained)
constant -2.89 -2.79 -2.69
log U 0.85 0.78 0.72
log V 0.14 0.22 0.28

Steady State prediction
constant - - -
log θ 0.14 0.22 0.28
Note: Steady State results are calculated numerically from the logistic fit of the
distribution using equation (19). The dynamic simulation results are OLS esti-
mates from the simulated series using a logistic distribution. Reported coefficients
are means over 1000 simulations.

We further analyze whether we have artificially imposed the CRS assumption
in our comparative static exercise. We estimate the following unconstrained
matching function:

logmt = β0 + β1 log vt + β2 log ut + ψt, (26)

where mt denotes all matches in period t. Table 3 shows that the sum of
estimated coefficients (β1+β2) is virtually 1. The estimated coefficients are also
statistically significant at the 1% level in every single run of the simulation.16

Interestingly, when we estimate other functional forms such as CES, the
Cobb-Douglas specification is confirmed. As a robustness check we have also
performed IV estimations using the lagged value of market tightness as an in-
strument. This does not alter our results.17

4.4 Traditional Contact Function and Idiosyncratic Pro-

ductivity

Finally, the dynamic simulation puts us in a position to combine idiosyncratic
productivity with a traditional contact function. Hence, we assume that the
contact probability is defined by pt(vt, ut) = µθγt with γ > 0, i.e. the job-finding
rate is not only driven by the movement of the cutoff point for idiosyncratic
productivity, but also by a procyclical contact rate.

We analyze how much of the empirical matching function correlation is due
to the contact function and how much is due to idiosyncratic productivity. For
this purpose, we again use the logistic distribution for wages (see Table 3) and
determine the contact elasticity γ so as to get an overall elasticity of matches

16We do not report t-statistics as means over t-values would not have a meaningful inter-
pretation.

17Results are available from the authors on request.
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with respect to vacancies of 0.35 as found in the empirical matching function.
The results are shown in Table 4.

Table 4: Weight on vacancies, dynamic simulations with different contact func-
tion specifications.

1st percentile 5th percentile 10th percentile

Matching function correlation with γ = 0
log θ 0.14 0.22 0.28

Calibrated elasticity of the contact function (γ)
log θ 0.17 0.11 0.06

Combined matching function correlation
log θ 0.35 0.35 0.35
Note: The dynamic simulation results are OLS estimates from the simulated series
using a logistic distribution. Reported coefficients are means over 1000 simulations.

Our numerical results are in line with our theoretical results from Section 3.2.
When a procyclical contact rate and idiosyncratic productivity are combined,
this leads to a larger weight on vacancies in an estimated matching function.
The first line in Table 4 shows the results for the model simulation with idiosyn-
cratic productivity but with a degenerate matching function. The second line
shows the elasticities of a traditional contact function that would correspond
to the overall elasticity of matches with respect to vacancies if there was no
idiosyncratic productivity. The third line shows the combination of the two
mechanisms. Interestingly, the resulting matching function correlation has a
weight on vacancies which is roughly equal to the sum of the weight on vacan-
cies in the two cases. More precisely, the sum of the two mechanism is somewhat
smaller than the overall weight on vacancies. Thus, there is a small degree of
complementarity between idiosyncratic productivity and the traditional contact
function.

The results suggest that 50% or more of the observed elasticity of matches
with respect to vacancies may actually be driven by idiosyncratic productivity.
When we use the 10th percentile of the wage distribution, 80% of the weight
on vacancies are driven by idiosyncratic shocks. Thus, our exercise shows that
there is a potentially large bias in standard matching function estimations if
idiosyncratic productivity plays a role. Hence, in many model applications, the
contact functions may be misspecified, assigning too large a role for vacancies
in the process of match formation.

Why is this important? Hosios (1990) shows that matching models with a
CRS matching function are constrained efficient when firms’ bargaining power
in Nash bargaining is equal to the weight on vacancies in the contact function.
But by using the weight on vacancies from empirical estimations, there is a
misspecification. This may lead to a misjudgement of the welfare implications of
policy interventions. In addition, the quantitative effects of policy interventions
that affect the vacancy margin will be smaller.
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5 Conclusion

Our paper shows that a wide class of models with idiosyncratic productivity
and a vacancy free entry condition generates a positive equilibrium relationship
between matches on the one hand and unemployment and vacancies on the other
hand. Although this insight is straighforward, we are the first paper to establish
this connection and to work out some interesting implications. We have shown
analytically that idiosyncratic productivity and free entry of firms generate a
Cobb-Douglas constant returns relationship. This relationship continues to hold
for a realistic calibration of the idiosyncratic productivity distribution and for
aggregate shocks. Furthermore, we show that even with a degenerate contact
function the equilibrium comovement, based on idiosyncratic shocks and free
entry of firms, generates a matching elasticity with respect to vacancies which
is very close to the data. Our calibration with indiviual wage data suggests that
the matching function in many calibrations is seriously misspecified.
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A Theory: Derivations

This Appendix proceeds in three steps. First, we show the intermediate steps
for the results in Section 2. This corresponds to the case where the idiosyncratic
shocks is only drawn during the first period of employment. Second, we show
that the result also holds for a model with an iid shock in each period of employ-
ment, i.e. a model with endogenous separations (an assumption conventionally
used in search and matching models with endogenous separations). Third, we
show that the result does not change when workers draw an idiosyncratic shock
realization at the beginning of their employment span and this realization does
not change over time (an assumption conventionally used for the wage offer
distribution in search models).

A.1 Baseline Results
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Thus:
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Combining equations (31) and (36), we obtain the heterogeneity based match-
ing function:
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A.2 Endogenous Separations

With endogenous separations, the cutoff point is
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With endogenous separations, market tightness is:
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Taking into account that η = φ in this setting and after some algebra, we
obtain:
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Combining equations (41) and (47), we obtain the heterogeneity based match-
ing function:
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A.3 Same Idiosyncratic Shock for the Entire Employment

Span

−ε̃ = a−w−αε̃+δ (1− φ) (a− w + (1− α) ε̃)+δ2 (1− φ)2 (a− w + (1− α) ε̃)+...
(50)
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Taking into account that η = φin this setting and after some algebra, we
obtain:
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Combining equations (53) and (58), we obtain the heterogeneity based match-
ing function:
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B Data Description

The German administrative database provides coherent definitions of the match-
ing function variables. We use monthly data over the time period from 1993 to
2007. Matches and unemployment are obtained from the Sample of Integrated
Labor Market Biographies (SIAB). The SIAB is a 2% random sample of all Ger-
man residents who are registered by the Federal Employment Agency because
of paying social security contributions or receiving unemployment benefits (see
Dorner et al., 2010). Unemployment benefits may cover contribution-based ben-
efits, means-tested benefits and income maintenance during training. We use
an adjusted measure of unemployment benefit receipt according to Fitzenberger
and Wilke (2010) to determine the unemployment stock. Matches are defined as
transitions from unemployment to employment subject to social security. Even
though marginal employment has become subject to social security since 1999,
we do not consider this kind of employment as it is often ascribed to a step-
ping stone into regular jobs. The number of matches is calculated continuously,
i.e. we take into account every daily transition. Hence, we do not neglect any
job findings that are reversed within a month. See Nordmeier (2012) for more
details on the time series.

Vacancies are taken from the official statistics and cover open positions that
are reported to the Federal Employment Agency. The reported vacancies ac-
count for about 30-40% of overall vacancies in Germany. However, an adjust-
ment of the reported vacancies by using the reporting rate of the IAB Job
Vacancy Survey would not affect our estimation results because the reporting
rate does not show a cyclical pattern in our observation period.

For our calibration exercise, we exploit the wage information included in
the SIAB. Wages are shown as the employee’s gross daily wage in Euros, which
was calculated from the fixed-period earnings reported by the employer and
the duration of the employment period in calendar days. Because we focus on
new full-time jobs, we only consider wages above the marginal part-time income
threshold. We use the consumer price index (CPI) from the National Accounts
to obtain real daily wages.
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Table B.1: Description of control variables

Variables Extracted Definition
series

Unemployment long Share of long-term unemployed,
duration i.e. unemployment duration ≥ 1 year
Age young Share of unemployed with age ≤ 25 years

old Share of unemployed with age ≥ 55 years
Education low-skilled Share of unemployed without vocational

training (acc. to Fitzenberger et al., 2005)
high-skilled Share of unemployed with university degree

(acc. to Fitzenberger et al., 2005)
Nationality foreign Share of unemployed with immigration

background (see Wichert and Wilke, 2012)
Gender female Share of female unemployed
Family status married Share of married unemployed

child Share of unemployed with at least one child
Benefit receipt UB I Share of contribution-based unemployment

benefits recipients (unemployment benefits I)

Data source: SIAB.

C Different Wage Groups

The results in Section 4.3 are based on the distribution of entry wages of a
homogenous reference group. We repeat this exercise several times each time
changing certain characteristics of the reference group. We consider the follow-
ing group compositions: The reference group with...

• ... low-skilled (no vocational training) instead of medium-skilled.

• ... women instead of males.

• ... long-term instead of short-term unemployed.

• ... age further differentiated (ten year age spans).

• ... education further differentiated (no degree, vocational training degree,
high school, high school and vocational training, technical college, univer-
sity).

Table C.2 reports for each percentile the highest and the lowest estimates of
all groups along with the baseline. Our conclusions from Section 4.3 are robust
to the different group compositions. For the 5th percentile, for instance, we get
a minimum of 0.13 for the coefficint on vacancies and a maximum of 0.26.
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Table C.2: Weights on vacancies and unemployment: Robustness

1st percentile 5th percentile 10th percentile

minimum
constant -2.98 -2.90 -2.79
log U 0.93 0.87 0.79
log V 0.06 0.13 0.21

base
constant -2.89 -2.79 -2.69
log U 0.85 0.78 0.72
log V 0.14 0.22 0.28

maximum
constant -2.83 -2.73 -2.64
log U 0.81 0.74 0.69
log V 0.19 0.26 0.31
Note: The reported coefficients are means over 1000 simulations.
The matching function was estimated unconstrained.

D Parametrization of the Model

We parameterize the model on a monthly basis. For an overview of targets and
parameters see Table D.3. We assume Nash bargaining, which ensures private
match efficiency. Nash bargaining is a special case of our general wage rule
(9). We set the bargaining power of workers to 0.5. Note that our results are
completely robust to variations in this parameter. Aggregate productivity is
normalized to 1. The discount factor is 0.99

1
3 and the vacancy posting cost is

0.1. The latter only affects the level of market tightness and is otherwise incon-
sequential. In line with the empirical data for Germany, we set the separation
rate to 0.01. The value of non-work is set to 0.8. Unemployment benefits for
short-term unemployed in Germany are 60 or 67% of the last net wage. Our
value takes into account that there is a value of home production. We simulate
the model with an AR(1) process for productivity. The correlation coefficient
in the AR(1) process is set to 0.95 and the standard deviation of the shock is
0.44%. We have estimated these values from productivity data from the German
National Accounts.18

A nice feature of the logistic distribution is that the derivative of the con-
ditional expectation is uniquely determined by the cumulative density to the
right of the cutoff point (i.e. the selection rate) for any combination of mean
and variance. Thus, we can set one of the two parameters of the distribution
freely. In this exercise, we set the standard deviation of the logistic distribution
to 1 and let the mean of the distribution be determined endogenously. The 1st,
5th, and 10th percentile of our wages correspond to selection rates of 0.956,

18Productivity: Output per hours worked from the Federal Statistical Office (Statistisches

Bundesamt), 1991Q1 to 2013Q1.
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0.921, and 0.885 in the fitted distribution. Note that these do not necessarily
correspond to the real selection rate as we do not know the number of workers
to the left of the distribution. However, for the dynamics of our model it is
irrelevant whether we have a low selection rate with a high contact rate or vice
versa. What matters is the shape of the idiosyncratic shock distribution to the
right of the cutoff point which we calibrate with wage data. The contact rate is
set to match the empirical job-finding rate of 5% per month is steady state.

Note that the mean of idiosyncratic productivity seems unrealistically low in
our parametrization. Two comments are in order. First, our baseline model is
very simple and does not contain any training cost or fixed costs of production.
In addition, the influence of unions may lead to larger average wages. Including
these features would potentially lead to a larger average calibrated idiosyncratic
productivity in the first period of employment. Second, our results for the
elasticity of the matching function with respect to vacancies are independent of
our parametrization strategy. The particular combination of mean and variance
for a given selection rate does not matter for our key results.

Table D.3: Parameters and Targets

Parameter Value Source and/or target

Discount factor 0.99
1
3 set

Bargaining power 0.5 set
Value of leisure 0.8 set
Separation rate 0.01 SIAB data
Vacancy posting cost 0.1 set
Aggr. productivity 1 normalization
AR-coef. productivity 0.95 National Accounts data
SD productivity 0.0044 National Accounts data
Selection rate 0.956, 0.921, 0.885 wage data
Contact rate 0.052, 0.054, 0.056 jfr: 0.05 (SIAB data)
SD of log dist. 1 set
Mean of log dist. -9.956, -10.827, -11.378 selection rate
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