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Abstract

Solar geoengineering can cool our planet and counteract the warming caused by
greenhouse gas emissions. Given current emission trajectories, solar geoengineering
has the potential to save lives, reduce severe impacts on economic production, and
save ecosystems and island states. Deterministic integrated assessment models tend
to show major benefits from solar geoengineering, but are highly sensitive to the
assumed and highly uncertain damages from solar geoengineering as well as the
effectiveness of cooling the planet. We analyze how uncertainties and the anticipation
of learning change the case for solar geoengineering in a world with an uncertain
temperature response to carbon dioxide emissions.
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1 Introduction

Sulfur-based geoengineering offers an affordable measure to counter dangerous climate
change at the global scale. However, the potential remedy is accompanied by novel risks
and uncertainties. These risks involve immediate and long-term damages from the em-
ployed cooling agent as well as solar geoengineering itself. Possible impacts are changes
in precipitation, acid rain, depletion of the ozone layer, and direct impacts on crop-yields
caused by changes of the incoming light (Crutzen 2006, Heckendorn et al. 2009, Keith and
MacMartin 2015). These potential impacts are highly uncertain, and it is unlikely that
these uncertainties can be reduced substantially before testing solar geoengineering on a
large scale. Many studies suggest that solar geoengineering is a highly cost effective tool
to counter geoengineering when relying on expected efficiency and best guess damages.
At the same time, many scientists have been warning of the dangers of even investigat-
ing the option of solar geoengineering because it could counter mitigation efforts, e.g.,
Biermann et al. (2022) prominently urge for an international non-use agreement on solar
geoengineering.

The present paper analyzes how uncertainties with and without the anticipation of
learning change the rationale of undertaking geoengineering. We explicitly introduce un-
certainty over the damages from sulfur-based geoengineering and its cooling efficiency
into an integrated assessment model of climate change and solar geoengineering. We dis-
tinguish between persistent long-run uncertainty and quickly resolving short-term uncer-
tainty. The quickly resolving short-term uncertainty allows the policy maker to actively
learn from large scale deployment. Such learning only impacts the initial deployment
decision when a policy maker foresees the learning and anticipates how future use of geo-
engineering can be conditioned on the realized damages and cooling efficiency. We solve
for the rational deployment strategies before and after learning. We also evaluate these
deployment strategies from the perspective of policy makers who merely pay attention to
the immediate expected net benefits of deployment. We also formalize the concern that
the execution of and learning about sulfur-based geoengineering can reduce the incentive
to mitigate greenhouse gas emissions. The incentive to reduce emission is captured in the
social cost of carbon (SCC). We show how uncertainty, the anticipation of learning, and
having learned affects the incentive to mitigate.

Our model delivers both analytic and quantitative results. We provide explicit for-
mulas for optimal geoengineering deployment as well as the SCC. For this purpose, we
rely on Meier and Traeger’s (2022) SolACE model introducing solar geoengineering into
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Traeger’s (2021) Analytic Climate Economy model (ACE). The model combines a careful
calibration of sulfur’s nonlinear forcing contributions and climate dynamics with a general
economic production system. To integrate uncertainty, we rely on and extend approaches
from Traeger (2018). Following Epstein and Zin (1991), we separate risk aversion from the
intertemporal elasticity of substitution – which we assume to be unity as in Tallarini Jr
(2000). As a result, we can introduce reasonable levels of risk aversion without unduly
discounting the future, addressing concerns raised in the risk-premium and risk-free rate
puzzles.

Literature. Our contribution connects the literature on solar geoengineering with
the literature on stochastic integrated assessment of climate change. Many authors find
that optimally deployed solar geoengineering can reduce climate damages (Nordhaus and
Boyer 2000, Moreno-Cruz et al. 2012, Bahn et al. 2015) and we refer to Harding and
Moreno-Cruz (2016), Heutel et al. (2016) and Flegal et al. (2019) for a more comprehen-
sive discussion of this literature. Solar geoengineering introduces several new uncertainties
to integrated assessment models of climate change, including uncertainties governing geo-
engineering damages and the radiative forcing response to stratospheric sulfur injections
(Heutel et al. 2018). Goes et al. (2011b) analyze the sensitivity to and robustness of
geoengineering strategies under a wide set of scenarios. Heutel et al. (2018) find that
uncertainty about the climate’s sensitivity increases geoengineering whereas uncertainty
over the damages of geoengineering reduces the optimal deployment. Heutel et al. (2016)
find that solar geoengineering is effective in dealing with tipping points that affect the
responsiveness of temperature to carbon, but less effective in dealing with tipping points
leading to direct economic losses. Emmerling and Tavoni (2018a) analyze the impact of an
uncertain future implementation of geoengineering on present emissions in a two period
model of climate change and Kelly et al. (2021) show that sulfur-based geoengineering
slows down the learning of the climate sensitivity in a stochastic extension of the DICE
model. Helwegen et al. (2019) investigate solar geoengineering deployment in a stochastic
version of the DICE model. Roshan et al. (2019) use cost-risk analysis to evaluate the
optimal mix of solar geoengineering and mitigation under probabilistic information about
climate sensitivity. Manoussi and Xepapadeas (2017) develop a dynamic solar geoengi-
neering game, extended to a setting of uncertainty and robust control in Manoussi et al.
(2018).

We connect this literature to a recent literature on analytic approaches to the inte-
grated assessment of climate change. Golosov et al. (2014) and Gerlagh and Liski (2018)
deliver a break-through in analytic integrated assessment modeling, and Traeger (2021)
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develops the approach to a full-fledged integrated assessment model with state of the art
climate dynamics and a general set of energy sectors. We build on Meier and Traeger’s
(2022) extension of the model integrating solar geoengineering and ocean acidification.
Our model advances the two literatures by delivering a new quantitative assessment of
the costs and benefits of solar geoengineering under uncertainty. Thereby, we connect
to early semi-analytic approaches to climate change assessment under uncertainty Hoel
and Karp (2001), Newell and Pizer (2003), Karp and Zhang (2006) as well as more recent
approaches employing full-fledged integrated assessment models Traeger (2018), Van den
Bremer and Van der Ploeg (2021).

2 The SolACE Model

This section briefly summarizes the deterministic SolACE model developed in Meier and
Traeger (2022). The model introduces the option of sulfur-based Solar geoengineering into
Traeger’s (2021) Analytic Climate Economy (ACE) model. We review the main equations
and results under certainty.

2.1 Major model components

Economic Production. Final output is a function of capital, labor, fossil energy, re-
newable energy, and the technology levels in different sectors. We write gross world output
as

Yt = F(At, Kt, N t, Et) (1)

where the vector At characterizes the exogenously evolving technology levels, the vectors
Kt and N t optimally distributed capital and labor across sectors, and Et a vector of
energy inputs. Our only assumption on the production function is homogeneity of degree
κ ∈ (0, 1) in capital, a setting that includes the Cobb-Douglas final production with a CES
energy sector of Golosov et al. (2014), the DICE setting of Nordhaus and Sztorc (2013),
as well as a more general setting with several final goods of varying energy intensity and
distinct substitutabilities between fossil and renewable energy sources Traeger (2022).
Fossil fuel resources can be scarce, in which case their Hotelling rent interacts with the
social cost of carbon incentivizing mitigation.
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Climate. CO2 emissions accumulate in the atmosphere and other carbon sinks following
a classical carbon cycle model. It is convenient to measure the resulting atmospheric CO2

concentration M1,t relative to the preindustrial concentration as mt =
M1,t

Mpre
. Atmospheric

CO2 causes a greenhouse effect that increases atmospheric temperatures, which we model
using Traeger’s (2021) non-linear atmosphere-ocean temperature dynamic system. The
resulting global atmospheric temperature T1,t measures the increase over 1900 in degree
Celsius. In scientific terms, the strength of the greenhouse effect and of sulfur-based
cooling are measured in terms of their radiative forcing, which characterizes the energy
flux warming or cooling our planet. To cool our planet, we can deploy sulfur St (in the
form of sulfur dioxide) into our stratosphere, i.e., our atmosphere above the clouds. The
SolACE model characterizes the resulting radiative forcing as

Ft(mt, St) =
η

log(2)
log

(
f0 + f1mt +

(
f2 − f3

(
mt

St

)n)
St︸ ︷︷ ︸

≡ FCO2
t

)
. (2)

The expression FCO2
t characterizes the joint radiative forcing of CO2 and sulfur in CO2

equivalents. In the absence of solar geoengineering , only the second term in FCO2
t would

contribute. The inner bracket relying on the parameters f2 and f3 reduces the forcing in
response to sulfur injections St. The main contribution derives from the term f3

(
mt

St

)n
,

multiplying the stratospheric sulfur. Sulfur forcing is more efficient relative to CO2 the
larger the atmospheric carbon concentration and the lower the sulfur concentration. At
high injection rates, sulfur particles lump together decreasing their cooling efficiency. As
a result, scientists expect an asymptotic limit for the cooling from stratospheric aerosol
injections (Lawrence et al. 2018). The higher the CO2 concentration, the lower the warm-
ing implied by the marginal ton of CO2 and the higher the relative forcing reduction of
sulfur, which we measure in CO2 equivalents. We summarize both of these nonlinearities
in the joint term whose level effect is captured by f3 and whose nonlinearity is captured
by n > 0.

Damages. Temperature increase, carbon concentration, and sulfur St cause (net) dam-
ages Dt(T1,t, St,mt) that we measure as a fraction of output

Dt(T1,t, St,mt) = 1− exp [−DT (T1,t)−DG(St)−Dm(mt)] . (3)
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We take the convex temperature-based damage function

DT (T1,t) = ξ0 exp (ξ1 T1,t)− ξ0. (4)

The damage parameter characterizes the percentage of global output lost at a 3◦C tem-
perature increase (the expected climate sensitivity).1 The damages from the side effects
of geoengineering are defined as

DG(St) = d St, (5)

making d the semi-elasticity of damages from stratospheric sulfur injections (the percent-
age loss of output resulting from an additional unit of sulfur injections). The parameter
d includes operational costs. The net costs of an atmospheric carbon increase above
preindustrial levels (mt − 1) are

Dm(mt) = a (mt − 1), (6)

where a is the semi-elasticity of production with respect to changes in the carbon dioxide
concentration. Costs include ocean-acidification and benefits include the fertilizer effect
that increases plant production and crop yields. For our theoretic analysis we assume
full depreciation of capital over the course of a decade, the model’s time step, and the
aggregate capital stock evolves as

Kt+1 = Yt [1−Dt (T1,t, St,mt)]− Ct. (7)

To account for the incomplete depreciation of capital over a decade, our quantifications
make use of the ACE model’s extended capital accumulation formula (Traeger 2021). A
global social planner maximizes the infinite stream of consumption

max
Ct,Et,St

∞∑
t=0

βt log(Ct) (8)

1The climate sensitivity is the temperature response to a doubling of the preindustrial CO2 concen-
tration and we adobt the IPCC’s (2021) current best guess in expectation. Temperature damages are
convex and in technical terms ξ0 characterizes the semi-elasticity of output to an exponential temperature
increase above preindustrial levels, i.e., the percent of output lost in response of a unit increase of an
exponential transformation of temperature. See Traeger (2021) for a detailed discussion of the functional
form and calibrations to various estimates in the literature.
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subject to equations (1)-(7), and some additional model details summarized in Appendix A.
The parameter β denotes the utility discount factor.

2.2 Optimal policies in a deterministic world

This section provides a short overview of the main policy results of the global SolACE
model from Meier and Traeger (2022). We use the deterministic outcome as a baseline and
compare it to our results from the uncertainty analysis in the subsequent section. The
optimal policy maximizes welfare with respect to the consumption rate, optimal labor
distribution, capital distribution, fossil inputs, and sulfur deployment.

Sulfur deployment. The optimal level of sulfur deployment in the deterministic SolACE
model is given by

St =

(
(1− n) γ f3
d+ γ f2

) 1
n

mt (9)

with climate change impact γ = β ξ0 σ̃. Apart from the discount factor β, this climate
impact is composed of the climate damage parameter ξ0 (see equation 4) and a climate
dynamics specifier σ̃. The climate dynamics specifier abbreviates a term reflecting the
speed of the forcing response as well as ocean cooling. Its magnitude also depends on the
discount factor, see equation (28) in Appendix A for its close-form solution.

The optimal level of sulfur deployment increases linearly in the atmospheric carbon
concentration. The proportionality factor can be interpreted as the solar geoengineering
propensity,

zdet ≡
(
(1− n) γ f3
d+ γ f2

) 1
n

(10)

It includes the moderators and drivers of sulfur deployment. Sulfur deployment increases
in the effectiveness of the cooling captured by f3 and in the strength of the climate
impact γ. Sulfur deployment falls in the geoengineering damages. The decrease of the
cooling efficiency expressed by n has two counteracting impacts on optimal deployment.
The term 1 − n in the numerator reduces the deployment in response to the efficiency
reduction, yet, the exponent increases with a cooling reduction, which can increase the
propensity as long as it is sufficiently small.
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Social Cost of Carbon. The SCC in money-measured consumption equivalents in the
deterministic SolACE model is

SCCt =
Y net
t

Mpre

[
a︸︷︷︸

ocean
acid

+ f1 γ︸︷︷︸
greenhouse

−
((

f3
zn

− f2

)
γ − d

)
zdet︸ ︷︷ ︸

geoengineering

]
ϕ̃. (11)

The solar geoengineering propensity zdet (see equation 10) reduces the SCC. And it does
so more strongly, the higher the climate change impact γ = β ξ0 σ̃ (which at the same
time increases the base SCC proportional to f1). The term Φ̃ is a carbon cycle specific
multiplier. It can be interpreted as a discounted sum over the decreasing fraction of a
marginal ton of CO2 emitted remaining in (or returning to) the atmosphere over the
course of time, see Traeger (2021). The fraction Y net

t

Mpre
sets the scale and units of the

SCC. The square brackets characterize net damages and the term ϕ̃ amplifies the SCC
as a result of the long life-time of atmospheric CO2 (carbon cycle). In the absence of
geoengineering, most analytic integrated assessment models like ACE only contain a term
corresponding to our f1γ reflecting the cost resulting from a temperature increase in the
absence of climate engineering. Our additional term a represents the direct net damages
from atmospheric CO2 caused by ocean-acidification net of the land-based fertilization
effect. The term in round brackets reduces the SCC as a result of solar geoengineering
(the bracket is always positive). The inner bracket characterizes the net forcing reduction,
a benefit, which is partially offset by solar geoengineering damages d. This reduction of
the SCC increases concavely in the solar geoengineering propensity zdet (it shows up as
well in the denominator because of decreasing efficiency).2

3 Geoengineering under Persistent Uncertainty

This section introduces long-term persistent uncertainty into the SolACE model. After
introducing the policy maker’s objective function (Bellman equation), we introduce un-
certainty governing (i) damages from solar geoengineering, (ii) the forcing efficiency of
sulfur, and (ii) climate change uncertainty. In this section’s setting, the policy maker
is aware of the stochastic nature of long-term damages and radiative forcing, but the
nature of the setting limits his or her structural learning so that uncertainty remains
persistent. We analyze optimal sulfur deployment and the SCC under such persistent
long-term uncertainty.

2For a more detailed discussion see Meier and Traeger (2022) and Traeger (2021).
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3.1 Objective

The policy maker optimizes the welfare of a representative agent. The policy variables
are the consumption rate xt, the optimal labor distribution N t, the normalized capital
distribution Kt, the fossil inputs Et, and the sulfur deployment St which will be the
object of our main focus. We consider a risk aversion optimization over an infinite time
horizon. The representative households has log-utlity from consumption u(Ct) = logCt,
which governs her (or the social planner’s) elasticity of intertemporal substitution (EIS).
Whereas an EIS of unity might be defensible for intertemporal substitution,3 it is far
too high to capture risk aversion. Thus, we disentangle risk aversion from the EIS and
calibrate it to the asset pricing literature following Traeger (2018). The approach results
in the Bellman equation

Vt(·) = max
xt,N t,Kt,Et,St

log
(
Ct(xt,N t,Kt,Et, St)

)
+

β

α
log
(
Et exp[αVt+1(·)]

)
. (12)

The parameter β captures utility discounting and α captures intrinsic risk loving. As
such, α will generally be negative. The limit of α = 0 corresponds to the standard Bell-
man equation where risk aversion is simply the inverse of the EIS (so unity). Setting
α = −1 corresponds to a disentangled Arrow-Pratt coefficient of relative risk aversion of
approximately 8 and will be our base value Traeger (2018). The reader might recognize
the expectation Et exp[αV (·)], with α negative, as constant (absolute) risk aversion ag-
gregation. Here, it is applied to uncertainty over future uncertainty welfare as measured
by the value function and, thus, measure risk aversion with respect to welfare gains and
losses.4 In the context of Epstein-Zin preference, α measures the difference between a
decision maker’s Arrow-Pratt risk aversion to uncertainty and her mere desire to smooth
consumption over time. See (intrinsic risk aversion). See Traeger (2019) for a detailed
and axiomatic discussion of intrinsic aversion to risk, which is identified in the data by a
large literature on asset pricing and long-run risk.

Equation (12) suppresses the state variables that form the arguments of the value
function and whose evolution depends on the control variables: consumption rate xt, labor
distribution over sectors N t (a vector), capital distribution over sectors Kt (a vector), and

3The standard macroeconomic literature suggests a lower elasticity of intertemporal substitution, yet
the asset pricing and macro finance literature suggests a higher elasticity disentangling the EIS from risk
aversion as well do here.

4The term 1
α log converts the expectation back into utility values where the α cancels for deterministic

contributions. We emphasize that, despite the look of it, the exponential aggregator arises in the limit
of taking the EIS to unity under log-utility in the more general Epstein and Zin (1991) setting.
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primary energy inputs Et (a vector containing both fossil and renewable energy), and the
sulfur deployment St.

3.2 Damage uncertainty

The potential damages from sulfur-based geoengineering include changes in the precipi-
tation patterns, a reduction in the upper ozone layer, acid precipitation and sulfur depo-
sition (Crutzen 2006, Heckendorn et al. 2009, Keith and MacMartin 2015). Quantifying
the adverse consequences of sulfur-based geoengineering are difficult given the lack of
comparable experiments apart from a few volcanic explosions. Some authors, for exam-
ple Moreno-Cruz and Keith (2013), therefore analyze optimal policy as a function of the
damage parameter. Others make explicit assumptions, acknowledging a limited or hardly
existing empirical basis. Table 1 shows several of those estimates and their translation
into the damage parameter d, specifying the fraction of global output lost per TgS. As-
sessments of operational costs to deploy the sulfur particles are both smaller and more
reliable than damage estimates.

Table 1: Damage uncertainty (Meier and Traeger 2022)

Authors Assumption d (per TgS)
Emmerling and Tavoni (2018b) Consumption loss of 3% compensating 0.1%

each 3.5W/m2 of forcing
Goes et al. (2011a) GDP loss between 0 and 5% per forcing 0-0.17%

equivalent to a doubling CO2 forcing
Heutel et al. (2018) GDP loss of 3% for resetting forcing 0.21%

to the preindustrial level

We incorporate the uncertainty of damages from solar geoengineering by adjusting the
damage equation (5) as follows

D(St) = dSt + πd
t (13)

where the parameter d continues to characterize the present best guess for geoengineering
damages and the first term mirrors the deterministic model. The stochastic process πd

t is
itself a function of sulfur deployment and follows the equation

πd
t+1 = ϵdt

√
St + Γd πd

t . (14)

In every period ϵdt ∼ N (0, σ2
d) is a normally distributed mean-zero shock. The first term

in equation (14) generates damage uncertainty whose variance increases linearly in sulfur
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use (the square of
√
St). The second term in equation (14) makes damage uncertainty a

persistent process. Realizations of current shocks correlate highly with future shocks as
they most importantly represent learning about true damages apart from some stochastic
fluctuations. High damage persistence is captured by a relatively large autoregressive
coefficient Γd. The resulting one-step-ahead mean and variance of damags in equation
(13) are

ED(St+1) = dSt+1︸ ︷︷ ︸
initially expected damage

+ ΓdΠd
t︸ ︷︷ ︸

shock persistence

and VarD(St+1) = σ2
d St︸ ︷︷ ︸

shock volatility

.

The structure of the stochastic process is common to model stock market risk and, in
particular, long-run risk in asset pricing Bansal et al. (2014). Observing the current real-
ization, the decision maker also updates his or her expectations over next period’s damages
as a result of the autoregressive shock-persistence. In that sense, the decision maker learns
also in this setting of persistent uncertainty. However, the process is stationary and the
uncertainty never fully resolves.

3.3 Uncertainty about cooling efficiency

The uncertainty governing the forcing efficiency is high and the instantaneous radiative
forcing effect of sulfur injections varies strongly across different climate models (Niemeier
and Timmreck 2015, Niemeier and Schmidt 2017, Kleinschmitt et al. 2018, Lawrence
et al. 2018). In the real world, we experience major decreases around 1◦C in global
average surface temperature in response to some major vulcanic erruptions, such as mount
Pinatobu in Indonesia in 1991 . The cooling potential does not only depend on the
injection rate but also on the location of the injections. If sulfur particles are injected
in the tropics, they spreads effectively towards the poles (Lawrence et al. 2018). As
a consequence, it is impossible to do regional climate management using stratospheric
geoengineering without spillovers to the other regions. Recent studies suggest that it
might be possible to optimize the geographic distribution of the cooling by varying the
altitude, latitude and season of injections (Visioni et al. 2019, Dai et al. 2018, Jones et al.
2018, MacMartin et al. 2017, Kravitz et al. 2017). The literature also proposed alternative
aerosols like alumina and diamond particles (Weisenstein et al. 2015, Dykema et al. 2016),
calcite or limestone (Keith et al. 2016). Given the lack of a natural experiment with such
aerosols, our knowledge about the resulting forcing effect is even more limited.

We incorporate the uncertainty governing the cooling efficiency of stratospheric sulfur
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by adjusting the deterministic radiative forcing equation (2) as follows

Ft(mt, St) =
η

log(2)
log

(
f0 + f1mt +

(
f2 − f3

(
mt

St

)n)
St + πfl

t + πfn
t

)
, (15)

where we introduced the stochastic process πfl
t following

πfl
t+1 = ϵflt

√
St + Γfl πfl

t with Et π
fl
t+1 = Γfl πfl

t and Vart πfl
t+1 = σ2

fSt. (16)

Once again, a mean-zero iid shock ϵflt ∼ N (0, σ2
f ) governs the first term and implies a

variance that scales linearly in sulfur deployment. The second term makes the uncertainty
persistent with the autoregressive coefficient Γfl.

The stochastic process in equation (16) scales the uncertainty linearly with sulfur de-
ployment. As we explain in section 2.1 and see in equation (16) the main part of the
actual cooling is a non-linear contribution that increases non-linearly with sulfur deploy-
ment as well as the prevailing CO2

5 Therefore, we also introduce uncertainty that scales
nonlinearly in these contributions following a second autoregressive stochastic process

πfn
t+1 = ϵfnt

√(
mt

St

)n

St + Γfn πfn
t with Et π

fn
t+1 = Γfn πfn

t and Vart πfn
t+1 = σ2

fm
n
t S

1−n
t .

(17)

whose shock variance scales with mn
t and S1−n

t , similar to that of the main deterministic
forcing contribution. As with damage uncertainty, the decision maker can expect to learn
from current shocks about the future, but uncertainty persists and never fully resolves.

3.4 Climate change uncertainty

Finally, we introduce uncertainty governing climate change itself. We include uncertainty
about the temperature response to atmospheric CO2 concentrations because these un-
certainties could potentially make solar geoengineering more worthwhile. For the base
uncertainty governing climate change we rely directly on Traeger (2018). He models the
uncertain temperature response to atmospheric CO2 using a shifted autoregressive gamma
process zt and we adopt process and calibration from the paper. We summarize details
of this model in Appendix C, which also states mean and variance of the process zt. In

5We remind the reader that the non-linear CO2 interaction results from expressing sulfurs cooling
effect in terms of CO2 equivalent forcing, see Meier and Traeger (2022) for an extended discussion and
transformation into generic forcing units.
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addition to the process characterizing basic climate change uncertainty, we have to once
again consider the interaction between CO2’s climate forcing and sulfur’s cooling in the
radiative forcing equation, which we further extend to the form

Ft(mt, St) =
η

log(2)
log

(
f0+f1mt+

(
f2 − f3

(
mt

St

)n)
St+πfl

t +πfn
t +zt+1+πcn

t

)
. (18)

The process πcn
t is the exact analogue of equation (17) again modeling uncertainty in

the nonlinear forcing term that captures the interaction between sulfur and CO2 in their
temperature impact

πcn
t+1 = ϵcnt

√(
mt

St

)n

St + Γcn πcn
t with Et π

cn
t+1 = Γcn πcn

t and Vart πcn
t+1 = σ2

fm
n
t S

1−n
t .

(19)

Importantly, the forcing impact of this new nonlinear interaction term πcn
t and that of the

earlier stochastic process πfn
t characterized in equation (17) are unlikely to be independent.

Thus far, we have silently assumed that all one-step-ahead shock increments ϵdt , ϵ
fl
t , ϵ

fn
t ,

and zt are independent. When it comes to ϵcnt , we assume that the shock is generally
correlated with the increment ϵfnt as both together characterize the uncertainty governing
the interaction between sulfur’s cooling and CO2’s warming. We denote the correlation
coefficient between the two by ρ. Both within a given model and across different models
there can be uncertain physical processes or model differences that would offset each
others stochastic shocks to the interaction term or that reinforce the uncertainty.

3.5 Optimal sulfur deployment

Appendix B solves the intertemporal optimization problem of optimal sulfur deployment.
The optimal deployment strategy foresees future shock distributions and the persistence
of shocks and our approach solves the infinite horizon stochastic fix point problem. As
in the deterministic setting, we find that optimal slfur deployment increases linearly in
the atmospheric carbon concentration. The crucial response to uncertainty lies in the
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geoengineering propensity zunc, i.e., the deployment per unit of atmospheric CO2

Sunc
t = mt ×
(1−n)γf3 − −αβ(1−n)

(1−βκ)
γ2

2

[ geo nonlinear︷ ︸︸ ︷
(σfn)2

(1− βΓfn)2
+

correlation geo and clim︷ ︸︸ ︷
2ρσfnσcn

(1− βΓfn)(1− βΓcn)
+

clim interaction︷ ︸︸ ︷
(σcn)2

(1− βΓcn)2

]

d+ γf2 +
−αβ

2(1−βκ)

[
(σd)2

(1− βΓd)2︸ ︷︷ ︸
damage uncertainty

+
γ2(σfl)2

(1− βΓfl)2︸ ︷︷ ︸
geo linear

]


1
n

︸ ︷︷ ︸
≡ zunc

The initial terms in the numerator and denominator of the geoengineering propensity zunc

remain the same as in the deterministic setting, see equation (11). Uncertainty introduces
the terms proportional to risk aversion −α > 0. These terms reduce the numerator and
increase the denominator. Thus, all uncertainty contributions suppress sulfur deployment.
We start by interpreting the contribution characterizing damage uncertainty. Similarly
to the best guess damage parameter d, it increases the denominator. The uncertainty
effect is proportional to the risk aversion weighted variance −α(σd)2, and it grows with
the patience weighted persistence of the shocks (autocorrelation) (1−βΓfl)2. If the policy
maker is patient and the uncertainty is persistent, then this factor substantially amplifies
the policy maker’s concern for uncertainty trigger by risk aversion and thos variance. We
note that the persistence Γd ‘physically’ increases the long-run risk as the iid shocks to
mean damages accumulate and build up long-term uncertainty. In contrast, the parameter
β is the preference contribution and represents that the long-term buildup of uncertainty
matters more for patient policy makers. The term 1 − βκ reflects the intertemporal
investment multiplier resulting from the intertemporal spill-over of the shocks through
the economic production and investment process.

The cooling uncertainty scaling linearly in sulfur deployment delivers a structurally
almost identical contribution with the same dependencies and amplifiers. The only dif-
ference is that the climate impact parameter γ translates the forcing uncertainty σfl into
the “climate damage relief” before it is weighted by the decision maker’s risk aversion.
The same is true for the nonlinear forcing uncertainty that reduces the numerator. Here,
the middle term picks up the correlation. Together, the three contributions always reduce
optimal sulfur deployment. If the shocks are perfectly negatively correlated, then the
contribution is smallest (potentially zero if both shocks have the same magnitude). The
contribution is strongest for perfectly positively correlated shocks.
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3.6 The impact on optimal mitigation: the Social Cost of Carbon

The uncertainties affect not only the optimal sulfur deployment, but also the incentives to
reduce CO2 emissions. The SCC reflects the long-term damage from releasing a marginal
ton of CO2 into the atmosphere. The SCC along the optimal trajectory coincides with
the Pigovian tax on CO2 emissions. The optimal carbon tax is directly affected by the
uncertainty and indirectly affected by the reduction of the geoengineering propensity
discussed above. The SCC in money-measured consumption equivalents under long-term
uncertainty is

SCCunc =
Y net
t

Mpre

(
γ
(
f1 + f2 z

unc − f3 (z
unc)1−n

)
+ a+ d zunc (20)

+
−αβ

2

[
(σd)2

(1− β Γd)2︸ ︷︷ ︸
damage uncertainty

+
γ2 (σfl)2

(1− β Γfl)2︸ ︷︷ ︸
forcing uncertainty fl

]
zunc +

γ

β

1

1− βγz

(
ϵ(c) + θ(c)

)
︸ ︷︷ ︸
climate change uncertainty cn

+
−αβγ2

2

[
(σfn)2

(1− β Γfn)2︸ ︷︷ ︸
geo nonlinear

+
2ρσfnσcn

(1− β Γfn)(1− β Γcn)︸ ︷︷ ︸
correlation geo and clim

+
(σcn)2

(1− β Γcn)2︸ ︷︷ ︸
clim interaction

]
(zunc)1−n

)
ϕ̃

Uncertainty increases the SCC in two different ways. First, the first line of the SCC
resembles that of the deterministic model, see equation (11), but with the geoengineering
propensity zunc instead of zdet. As we discussed above, uncertainty reduces the geoengi-
neering propensity. As a result, each unit of emitted CO2 will be (partially) offset to a
lesser degree and the first line of the SCC falls in all the contributions discussed in Section
3.5 though the decline in zunc.

Second, uncertainty directly and additionally lowers the SCC as we see in the second
and third line. These direct impacts are of the same form as those that we discussed in
the context of sulfur deployment. They are proportional to the risk-aversion weighted
variance −ασ2 > 0. Patience-weighted persistence amplifies these contributions. The
uncertainties affecting radiative forcing is moreover translated into the relief of climate
damages using the climate impact parameter γ. The nonlinear interaction uncertainty
increases with the correlation of the uncertainty between the climate change and the
cooling uncertainty or climate model misspecification.
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4 Quickly Resolving Short-Term Uncertainty

The previous section focuses on slow moving long-term uncertainty. These small but
highly persistent shocks reflect slow learning over a long-run future. The present section
studies the case where uncertainty resolves quickly over the course of a decade, our model’s
time step. Such a quick resolution of uncertainty is particularly likely for the cooling
effectiveness of solar geoengineering (its radiative forcing contribution). Our first section
discusses the case of a normally distributed forcing parameter whose true value will resolve
over the course of the current period. For this normal case, we can provide an insightful
analytic formula. The subsequent section discusses the case of Gamma distributed forcing
uncertainty and adds quickly resolving uncertainty of geoengineering damages. Both
sections connect the quickly resolving short-term uncertainty with the persistent long-
term uncertainty modeled in Section 3.

4.1 Cooling uncertainty (normally distributed)

The crucial forcing parameter in our model that hopefully resolves substantially over a
decade of geoengineering is the forcing effectiveness parameter f3 in equation (2). We
assume f3 ∼ N (µ, σ2). In general, we cannot find fully analytic solutions for the optimal
sulfur deployment or the optimal carbon tax. Appendix D derives the implicit equation
determining optimal forcing levels. We derive an explicit analytic solution approximating
sulfur’s forcing non-linearity parameter by n = 2

3
as compared to our estimated value of

n = 0.69. Then we can explicitly spell out the dependence of optimal sulfur deployment on
all other model parameters. The resulting optimal sulfur deployment rate in the presence
of quickly resolving cooling uncertainty is

S0 = zunc
(√

1 +Q2 −Q
)3

m0 with Q =
−αγ

β(1− β κ)

σ2

2µ

(
(zlin)2

zjoint

) 1
3

m0,(21)

where we assume µ = f3 and zlin is the geoengineering propensity in the absence of the
non-linear forcing and climate uncertainty where only the stochastic processes πd

t and πfl
t

defined in equations (14) and (16) contribute persistent long-run uncertainty. The novel
term Q is proportional to the variance σ2 characterizing short-term uncertainty. If the
short-term uncertainty vanishes so does Q and equation (21) returns the original sulfur
control rule S0 = zuncm0. As we increase the uncertainty, the term Q reduces optimal
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sulfur deployment.6 Apart from the short-term forcing uncertainty, the term Q also
increases proportional to the prevailing CO2 level. Thus, the uncertainty turns the linear
relation between atmospheric CO2 and optimal sulfur deployment concave. By limiting
the linear increase of sulfur deployment with the atmospheric carbon concentration short-
term uncertainty reduces the deployment sensitivity historic emissions.

In addition, the deployment falls in risk aversion −α > 0 and the climate impact
γ that translates forcing uncertainty into economic damages. The multiplier 1 − βκ in
Q’s denominator reflects again the intertemporal investment multiplier resulting from the
intertemporal spill-over of the shocks through the economic production and investment.
Finally, the damping is larger if more of the geoengineering propensity is driven by the
uncertainty processes πd

t and πfl
t whose variance scales linearly in deployment as compared

to nonlinearly processes πfn
t and πfn

t .

4.2 Gamma distributed Cooling & damage uncertainty

It is less obvious whether the uncertainty governing climate damages resolves as quickly as
the uncertainty governing the sulfur-based cooling. That said, it is reasonable to assume
that the first decade of geoengineering will substantially reduce some of the damage
uncertainties, while other uncertainties governing long-term and cumulative impacts will
persist. The present setting also splits the uncertainty over damages from geoengineering
into quickly resolving short-term versus persistent long-term uncertainty.

So far, we have assumed that all random variables are normally distributed. Absent
better knowledge, a normal distribution stands to reason. However, a left-bounded dis-
tribution might be similarly reasonable if we are confident that damages are non-negative
and that sulfur-based geoengineering cannot lead to an increase in radiative forcing (warm
the planet). In addition, the normal distribution neither exhibits skew nor kurtosis. In
order to test the implications of the normal distribution’s symmetry assumption as well as
the absence of kurtosis (or ‘fatness’) we analyze the policy impact of gamma distributed
forcing and damage uncertainty. We assume that sulfur’s forcing uncertainty is governed
by f3 ∼ Γ(k̄fl, θfl) with shape parameter k̄fl and a scale parameter θfl. We assume
that geoengineering damages are distributed d ∼ Γ(k̄d, θd) with shape parameter k̄d and
scale parameter θd. We assume that both random variables are independently distributed
and resolve during the first period. The shape and the scale parameters are functions
of the expected values µi (the deterministic model’s best guesses) and the corresponding

6It is easy to see that the term (
√
1 +Q2−Q)3 converges monotonically to zero as Q → ∞. However,

such high Q values lie far outside of our calibration.
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uncertainties as characterized by the variances σ2
i

θi =
σ2
i

µi

and ki =
µi

θi
for i ∈ {f, d} (22)

Introducing damage uncertainty implies that the uncertainty already has a direct im-
pact on current period consumption and utility. The standard timing of the Bellman
equation would not permit such uncertainty as current controls are optimized under un-
certainty only over next period states but not uncertainty governing current period con-
sumption. With a decadal time step, and given our present ignorance about geoengineer-
ing damages, we want to analyze the case where decisions about the first implementation
of large scale geoengineering are made under immediate uncertainty about geoengineering
damages. As a result, we have to introduce uncertainty governing already the upcoming
period and modify the Bellman equation to

Vt(·) = max
xt,N t,Kt,Et,St

E0 exp

[
α
(
log
(
Ct(xt,N t,Kt,Et, St)

)
+

β

α
log
(
Et exp[αVt+1(·)]

))]
.

In evaluating equation (71), we assume that the first instance of long-term uncertainty
resolves in period 1 and, thus, is governed by the expected value operator E1 at the end
of period 1 (or the beginning of period 2). The short-term uncertainty, i.e., our gamma
distributed parameters d and f3, are governed by the immediate uncertainty evaluated
by E0.

There is no general analytic solution for the optimal sulfur level. Analyzing only one
of the two uncertainties at a time, we can obtain analytic solutions under the assumption
that n = 2

3
(as compared to our estimated n = 0.69). However, these solutions are the

roots of a cubic and quartic functions and are no longer very insightful. Appendix D.1
derives the implicit equation defining optimal sulfur deployment

5 Quantification and Discussion of Anticipated Learn-

ing

This section quantifies the effects of persistent long-run and quickly resolving short-term
uncertainty on optimal sulfur deployment and the incentive to mitigate. After summa-
rizing our calibration, we show and compare the impact of the various uncertainties on
optimal sulfur deployment. Subsequently, we discuss the effects of learning and optimal
deployment after the short-term uncertainty has resolved. Finally, we present the impact
of solar geoengineering on the SCC, i.e., the incentive to mitigate.
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5.1 Calibration

The deterministic model components and our expected parameter values rely on the cal-
ibration in Meier and Traeger (2022). Table 2 summarizes the main SolACE parameters.
As for the regions in the cited SolACE model, we have scaled up global warming damages

Table 2: Parameter values from deterministic SolACE model.

β ξ0 ξhigher0 σ̃ n f3 d
0.98610 3.2% 6.3% 0.63 0.69 0.46 0.1%

by 50% as compared to the DICE model. We refer to Traeger (2021) for a detailed discus-
sion of our climate damage function’s relation to the various versions of Nordhaus’s (2019)
DICE model. Our 50% increase is based on increasing evidence that that DICE damages
have been calibrated too low, as well as the paying more emphasis on matching the initial
damage convexity of DICE’s quadratic damage function rather than merely levels, which
increases ξ0. The parameter ξ0 characterizes the damages in percent of world output at a
3◦C temperature increase over preindustrial levels (expected climate sensitivity). When
matching levels, the damage function is initially less convex than the common quadratic
form and eventually more convex. The value is still very low as compared to some recent
estimates Burke et al. (2015), Howard and Sterner (2017), Newell et al. (2021) and our
choice purposefully stacks the cards against geoengineering. In addition to our base choice,
we will assess geoengineering for climate change induced damages of ξ = 6.3% of world
output at a 3◦C warming, the expected damages of Traeger (2018), still a conservative
but maybe more reasonable value in view of the recent literature.

Much of our analysis evaluates the option to deploy sulfur in 2050 in a scenario where
atmospheric temperature has reached 1.8◦ above preindustrial and the atmospheric carbon
concentrations are 1.8 times the preindustrial level. This scenario is based on Meier
and Traeger’s (2022) simulation where policy makers incorporate regional but not global
climate damages. Having crossed the 1.5◦ target and approaching the 2◦ target seems
a natural point to assess the option of geoengineering. To assess our sulfur deployment
after uncertainty resolves, we have to model emissions jointly with sulfur deployemnt. For
this purpose, we use the global version of the updated RICE model in Meier and Traeger
(2022). Our choice of the production sectors merely impacts our CO2 emissions. As a
result, this choice has an almost negligible impact on the results we present. Our choices of
the climate damage parameter result in the climate impact parameters γ = β ξ0 σ̃ = 1.7%

for the base case and γ = 3.5% for the scenario with higher climate damages. For an
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overview of all economic and climate model parameters we refer to Meier and Traeger
(2022). We take the calibration of risk aversion of α = −1 and the calibration of long-run
climate change (base) uncertainty from Traeger (2018). Given a decadal time step, we
set the autoregressive uncertainty persistence parameter to Γd = Γfl = Γfn = Γcn = 0.75.
The autoregressive parameter of the base climate uncertainty model is slightly higher
with a decadal autoregression of Γ = 0.8 suggesting even more persistence in climate
uncertainty. These choices are loosely based on comparisons to a slow Bayesian learning
model discussed in Traeger (2018). We list our values for the new parameters governing
uncertainty in Tables 3 (damage uncertainty) and 4 (forcing uncertainty).

Our best guess for geoengineering discussed in Section 3.2 is d = 0.1% of world output
per TgS (million tons of annual sulfur deployment). We pick a standard deviation charac-
terizing short-run damage uncertainty of σds = 0.05%. This choice is mostly inspired by
(i) acknowledging that we know very little about the quantitative impact of the resulting
damages and (ii) using the pdf depicted on the right of Figure 1 as a guide to judge the
magnitude of uncertainty. The pdf still gives considerable mass to double the expected
damages and has a fat tail. Our extreme damage scenario further increases the variance
by doubling the standard deviation. The dash-dotted line in Figure 1 shows that such
a further increase in uncertainty has a somewhat extreme impact on the shape of the
Gamma distribution. In order to maintain the expected value, the resulting fat tails can
only be compensated for by placing a lot of mass on vanishingly small damages. Our
choices for the damage variance and expectation pin down the shape and scale parame-
ters of the Gamma distribution by equation (22). In contrast to short-term uncertainty,

Table 3: Damage uncertainty parameters.

long-run short-term high
σd Πd

0 Γd µd σds σds
high

0.01% 0 0.75 0.1% 0.05% 0.1%

persistent uncertainty builds up over time to a factor of 1
1−Γd = 4 times the magnitude of

each period’s uncertainty σd. Thus, our choice of σd = 0.01% generates a distribution giv-
ing rise to generous long-run uncertainty over the unknown damages from geoengineering.
Anticipating deployment levels in the magnitude of a few TgS, the long-run uncertainty
will be larger than the short-run uncertainty. Overall, we think that our uncertainty
choices stack the cards against geoengineering: we assume high uncertainty levels already
individually for both short-run and long-run uncertainty, and these add up in characteriz-
ing today’s uncertainty over the potential damages caused by geoengineering. Finally, we
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Figure 1: Probability density functions for the different specifications of short-term un-
certainty stated in Table 3 and 4. The damage coefficient is in per mille (so 10−3) of
global world output per TgS (one million tons of sulfur deployed annually).

set the initial deviation from today’s expectation Πd
0 = 0, also aligning today’s long-run

expectations with our damage guesstimate of d = 0.1%.
We have slightly more information to calibrate sulfur’s forcing uncertainty as a result

of the recent G6 Solar Geoengineering Model Intercomparison Project. Based on personal
communications with one of the authors of Visioni et al. (2021), we found that the relative
forcing deviation across models at a 5 TgS annual deployment was approximately ±40% of
the average forcing effect.7 Given that our epistemological uncertainty exceeds the model
differences, we calibrate our uncertainty to about ±50% of the average cooling at a 5TgS
deployment. For higher deployment levels our model’s uncertainty exceeds the model
variation more generously. This uncertainty calibration leads to σfs = 0.1. For our high
uncertainty scenario, we again double the standard deviation of the base scenario resulting
in σfs

high = 0.2. We set the long-run persistent uncertainty to σflσfn = σcn = 0.025, which
again builds up over time to a long-run uncertainty about four times as high. The expected
value remains µfs = fdet

3 = 0.46 and initial deviation is Πd
0 = 0. We assume that the

uncertainty between the nonlinear interaction terms stemming from climate uncertainty
and cooling uncertainty are moderately positively correlated with ρ = 0.5. Figure 1a
on the left depicts the implied probability density functions for our short-term forcing
uncertainty parameter f3. The difference between the normal and the gamma distribution

7We are extremely grateful to Daniele Visioni for his help and for sharing graphs from ongoing work
based on the cited article’s data that we used in our calibration.
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Table 4: Forcing uncertainty parameters.

long-run short-term high
σfl σfn σcn Πd

0 Γfl Γfn Γcn µfs σfs σfs
high

0.025 0.025 0.025 0 0.75 0.75 0.75 0.46 0.1 0.2

in the base calibration is quite small. The asymmetry of the Gamma distribution becomes
more pronounced in the high uncertainty scenario.

5.2 Optimal Sulfur Deployment, Learning, and SCC

Figure 2 shows the optimal sulfur deployment as a function of the global atmospheric
carbon concentration relative to preindustiral levels. If climate damages are judged mod-
erate, optimal deployment levels are in the order of 5TgS or 5 million tons sulfur per year.
This deployment level corresponds to approximately 125 Boeing 747 flights deploying the
sulfur every day. 8 These stratospheric sulfur injections are small compared to the ap-
proximately 136 TgS/yr of sulfur emitted into the air as a result of fossil fuel combustion
and industrial processes (Kravitz et al. 2009). The optimal deployment doubles if we
judge climate damages to be more severe. The impact of uncertainty on deployment is
small. The impact of long-run persistent uncertainty is negligible. The impact of quickly
resolving short-term uncertainty is more notable and splits almost evenly between dam-
age and forcing uncertainty. Here, anticipated structural learning delivers an additional
incentive to “wait and see”. We note that our learning is conditional only on deployment,
not on the level of deployment. This assumption further stacks the cards against high
levels of sulfur deployment. Nevertheless, we see that uncertainty and learning have only
a mild impact on deployment. The difference between normally distributed and gamma
distributed forcing uncertainty is negligible. Only the high uncertainty scenario reduces
deployment more seriously, but even the reduction in this extreme uncertainty scenario is
small relative to overall deployment.

Figure 3 shows the optimal deployment after learning. The future realizations of dam-
ages and cooling efficiency are uncertain. Therefore, we present a pdf characterizing the
probability of different sulfur deployment levels.9 We note that different combinations

8The planes actually deploy the sulfur in terms of sulfur dioxide, which doubles the elementary mass.
A Boeing can not reach high enough, but can fuel fighter jets to bring the sulfur to the relevant altitudes.
More likely, dedicated airplanes will be designed for the task.

9Our pdf discards realizations that would target a temperature below the preindustrial level. While
extreme realizations might makes such a scenario reasonable, we do not consider our model suitable to
discuss such extreme realizations.
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Figure 2: Optimal sulfur deployment before the resolution of the quickly resolving short-
term uncertainty (qr-unce) for two different climate damage specifications. All but the
deterministic scenario contain persistent long-run uncertainty and the legend specifies the
additional short-term ‘qr’-uncertainty.

of geoengineering damages and cooling efficiency can lead to the same deployment lev-
els. The lines characterize the density of the continuous distribution. The bars on the
left represent the discrete probability of no sulfur deployment, which is 25% under the
assumption of moderate climate damages and close to 10% in the case of higher climate
damages. The range of deployment levels after uncertainty resolves (ex-post) covers a
wide interval; both half and double the ex-ante deployment level still receive consider-
able weight. Our default simulation (blue line) requires that the net benefit of sulfur
deployment has to exceed 0.1% of world output, otherwise geoengineering will not hap-
pen. Global geoengineering requires more than merely moving planes to the stratosphere.
There are many stakeholders and different countries with strong views on the topic. Our
threshold criterion captures that deployment will not happen unless the net benefit is
large enough to make it worthwhile confronting some opposition. The dotted orange line
represents ex-post deployment without such a political threshold criterion. We can see
that the efficiency threshold shaves off some of the probability mass at relatively low
deployment levels (turning them into no deployment).

In the scenario with moderate climate damages, the expected ex-ante net benefit of
geoengineering is 0.19% of global world output. The expected ex-post net benefit is 0.28%
of global output as a result of learning. We can show that the additional ex-post value
derives from learning using the following experiment. We commit the policy maker’s
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Figure 3: Optimal sulfur deployment after the resolution of short-term uncertainty. The
bar on the left has unit-width and depicts the discrete probability of foregoing geoengi-
neering after the uncertainty resolved. The blue line assumes that geoengineering is only
deployed if its net benefit exceeds 0.1% of world output, an assumption that chips away
some of the probability mass for low sulfur deployment levels (orange-dotted line).

second period sulfur deployment to the sulfur level that would be optimal in the absence
of learning, i.e., ex-ante optimal but in the second period when the actual realizations
of short-term uncertainty already happened. Thus, we do not allow the policy maker to
condition his or her deployment levels on the realizations. Then, ex-post net-benefits stay
almost as low as in the ex-ante scenario. They are slightly higher because of a carbon
stock and temperature increase from one period to the next (0.21%). We find that, under
moderate climate damages, short-term uncertainty and, thus, realizations of damages
generates a larger increase in ex-post value than the short-run uncertainty in cooling
efficiency. This finding goes along with a higher variance of ex-post sulfur deployment
under damage uncertainty (compared to cooling uncertainty). The decision maker gains
more from conditioning optimal sulfur deployment on the realization of damages, and
conditioning on realized damages makes a larger difference to optimal ex-post deployment.

The discussion above illustrates how the ability to learn gives a value to uncertainty.
Ex-ante deployment under uncertainty is very similar to the deployment under certainty,
where the deterministic model simply uses expected values for the different parameters
and ignores the uncertainty. Yet, for geoengineering, we expect part of the uncertainty
to resolve quickly. As a result, the decision maker can condition optimal deployment
strategies on the learned information. Therefore, (quickly resolving) uncertainty can
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increase the attractiveness of geoengineering if the decision maker is forward looking.
Ex-ante and ex-post benefits increase to 0.48% and 0.62% of global world output when
climate damages are judged more severe (or accounted for at a higher value). As the stakes
increase, so does the net benefit of resolving uncertainty (the difference between the two
values). Interestingly, under the higher climate damages, the ex-post increase of net
benefits is as much driven by forcing uncertainty as it is driven by damage uncertainty
(which dominates under lower climate damages). As global warming damages become
more severe, cooling efficiency gains importance relative to geoengineering damages.

The SCC captures the incentive to mitigate greenhouse gases. Our base scenario
with moderate climate damages has a present value SCC of 53$/tCO2 (USD per ton of
carbon dioxide) in the absence of geoengineering. Introducing the option of sulfur-based
geoengineering in a deterministic setting drops this value to 38$/tCO2, a substantial
reduction in the incentive to mitigate. Our persistent long-run uncertainty increases the
value to 40$/tCO2, again a rather minor impact of uncertainty in the ‘ex-ante world’,
where we use equation (20) (which lacks the impact of quickly resolving uncertainty).
The biggest SCC risk premium derives from our base climate uncertainty, a small part
from forcing uncertainty, and damage uncertainty has close to no impact on the ex-ante
SCC. For higher climate damages, the SCC without geoengineering is 100$/tCO2 and it
falls to 58$/tCO2 with the option of geoengineering in a deterministic world. Persistent
long-run uncertainty raises the SCC with geoengineering to 61$/tCO2 where once again
the main contribution stems from climate change uncertainty. Overall, the reduction of the
mitigation incentive triggered by the expected deployment of geoengineering is substantial
and warrants the worries that solar geoengineering can interfere with mitigation. That
said, also the reduced SCC under geoengineering is still far larger that actual carbon taxes
or carbon prices in most of the world. Persistent long-run uncertainties slightly increase
the SCC again, but only mildly so compared to the major drop triggered by the expected
use of geoengineering.

Figure 4 depicts the optimal carbon tax and, thus, mitigation incentive after the short-
term uncertainty has resolved. The discrete probability on the highest tax corresponds
to the case of stopping geoengineering after the short-term uncertainty resolves. We see
that this discrete probability relies on our assumption that policy makers only carry out
geoengineering if its myopic net benefit exceeds a minimal threshold. This assumption
shifts probability mass from the organge-dottet curve without such a threshold to the blue
bar representing the optimal tax in the absence of geoengineering. Whereas the threshold
requirement shaves Figure 3’s sulfur deployment probability off smoothly, it cuts Figure
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Figure 4: Optimal carbon tax (SCC) after the resolution of short-term uncertainty. The
bar on the right has unit-width and depicts the discrete probability of foregoing geo-
engineering, which triggers an SCC of 53$/tCO2 (left, moderate climate damages) and
100$/tCO2 (right, higher climate damgages). The blue line assumes that geoengineering
is only deployed if its net benefit exceeds 0.1% of world output.

4’s SCC distribution off sharply. The different combinations that just fail the myopic net
benefit criterion also lead to the same SCC.

6 Conclusions

We examine the impacts of uncertainty on the deployment decision of solar geoengineer-
ing. We provide explicit rules for optimal deployment, analytic insights, and quantitative
advice. Our findings support those of the deterministic literature. Geoengineering is a
valuable measure to counteract global warming. It is hard to justify eliminating this op-
tion from our policy portfolio. Anticipating learning, uncertainty can even make sulfur
deployment more attractive compared to deterministic models operating on best-guess
assumptions.

We find that, despite major uncertainties, a large scale implementation of sulfur de-
ployment is attractive, at least initially. Uncertainty slightly reduces the level of the initial
deployment as compared to models that simply base the deployment decisions on best
guess damages or cooling efficiency. This reduction increases in risk aversion, patience-
weighted uncertainty persistence, and of course the level of uncertainty itself. It also
increases slightly if the uncertainties governing sulfur-based cooling and climate change
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warming are correlated. Finally, the uncertainty’s impact on initial sulfur deployment is
stronger if we can expect uncertainty to resolve quickly. Yet, in the end, the magnitude
of this reduction is surprisingly small.

Our decision maker understands that he or she will learn from an initial large scale
deployment. The decision maker’s initial deployment strategy accounts for the value
of learning. After the initial learning phase, we find a substantial likelihood that solar
geoengineering will be discontinued. In our base scenario with rather moderate climate
damages this probability is 25%. The probability falls to just under 10% in our scenario
with higher climate damages. These values are based on an initial roll-out of solar geoengi-
neering in 2050 under a 1.8◦C warming. This scenario, simulated in a regionally strategic
version of SolACE (Meier and Traeger 2022) is the type of scenario where geoengineering
is discussed the most: we have already exceeded the 1.5◦C scenario and are on the way
to also exceed 2◦C. Thus, while encouraging an initial trial of solar geoengineering, our
model also warns against banking on solar geoengineering as a sole or reliable solution to
the global warming problem.

Real-world policy makers often rely on – or are forced to adopt – cost-benefit criteria
that are myopic instead of taking rational forward looking choices that incorporate a
value of learning. We subject our deployment strategies to a one-period cost-benefit
assessment rule that implements solar geoengineering only if the immediate climate change
damage relief dominates the expected damages from geoengineering by a threshold of
at least 0.1% of global output. Such a criterion does not prevent ex-ante deployment,
but is partly responsible for discontinuing geoengineering after the learning phase. Ex-
ante, sulfur-based solar geoengineering fails the myopic test if we double the threshold or
evaluate deployment at today’s warming level. By contrast, the expected post-learning
(one-period) net-benefit clearly passes also more stringent threshold criteria. After the
short-term uncertainty has resolved, the policy maker continues geoengineering only if it
is worthwhile. Moreover, he or she will adjust the sulfur-deployment level to the observed
realizations of expected damages and cooling efficiency, substantially raising expected
ex-post net benefits over expected ex-ante net benefits.

We find that the incentive to mitigate greenhouse gas emissions falls substantially
when we anticipate an initial deployment of solar geoengineering. The corresponding
SCC falls by 25-40%, a drop that increases with the severity of climate damages. This
reduction in the incentive to mitigate happens even if we anticipate that solar geoengi-
neering might be a failure ex-post. The substantial probability that geoengineering will be
discontinued after initial deployment adds an interesting twist to a wide-spread concern
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in the scientific community. The concern is often connected to the metaphor of a slippery
slope. We should not even research solar geoengineering because the mere research can
discourage mitigation and put us under pressure to undertake geoengineering. Indeed,
we find that ex-ante the expectations governing geoengineering substantially reduce the
optimal mitigation effort, even for a perfectly rational and forward looking policy maker
in an integrated assessment model with geoengineering and climate uncertainty. Yet, ex-
post, there is a substantial likelihood that we end up in a world where we have reduced
mitigation efforts ex-ante only to later revise the SCC back up realizing that solar geo-
engineering is not as beneficial as expected. If we are afraid of such a situation, it might
not be smart to procrastinate on research or deployment. Before deployment and learn-
ing, expecting potential future benefits reduces mitigation incentives, not just for some
myopic politician, but for a perfectly rational forward looking decision maker. Thus, it
seems helpful not to procrastinate on research and testing bit to explore the options on
the table and revise expectations.

Our calibration has stacked many cards against geoengineering. We assume rather
moderate climate change damages and high levels of both long-run persistent and quickly
resolving short-term uncertainty, governing the efficiency and damages of solar geoengi-
neering. Moreover, our geoengineering damage uncertainty is fat-tailed. Yet, we find that
a large scale deployment experiment of considerable duration is reasonable from the per-
spective of a rational forward looking decison maker as well as the perspective a myopic
policy maker. Within our model, these findings are robust. We do not consider our model
by itself a reasonable base to promote large scale experimentation. We can think of many
more checks, including variations in functional forms and a more detailed analysis of opti-
mal timing and magnitude of initial experiments. But we see our paper as an inspiration
for more and result-open research on the economics of solar geoengineering – not despite
but because of the uncertainties governing this important topic in a world that is not on
a path to meet its climate targets.
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Appendices

A Underlying Deterministic Model: Details

Production. Global gross output is a function of vectors of dimension Ij with j ∈
{A,N,K,E} and the production function is stated in equation (1). Homogeneity of
degree κ in capital is defined as

F(At, λKt, N t, Et) = λκF(At, Kt, N t, Et) ∀ λ ∈ R+. (23)

Population size is normalized to unity
IN∑
i=1

Ni,t = 1.10

Climate damages. Temperature-based damages are of the form

DT (T1,t) = ξ0 exp (ξ1 T1,t)− ξ0, (24)

see Traeger (2021) for a detailed discussion of the functional form and calibrations to
various estimates in the literature.

Resource scarcity. The first Id energy inputs E1, ..., EId causing CO2 emission are
collected in the subvector Ed

t . The vector Rt ∈ RId

+ characterize fossil fuel resource stocks.
The dynamics of the resource stock are

Rt+1 = Rt −Ed
t (25)

with initial stock size R0 ∈ RId

+ given. Renewable energies are indexed by Id+1 to IE. To
avoid boundary value complications we assume that scarce resources are essential.

Carbon dioxide. Following DICE, we consider three carbon reservoirs, atmosphere
(carbon content M1), upper ocean (carbon content M2) and lower ocean (carbon content
M3) which we summarize in the vector M . An extension to additional carbon reservoirs
is straight-forward. The dynamics of the carbon reservoirs is

M t+1 = ΦM t + ẽt, (26)

with the carbon cycle’s transition matrix Φ. Further we define ẽt = e1E
tot
t , with total

10We do not use population weighting in the objective function. The DICE model gives more weight
to larger future population, in which case we could not normalize the population to unity. See Traeger
(2021) for details.
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CO2 emissions Etot
t =

∑Id

i=1Ei,t + Eexo
t resulting from industrial fossil fuel burning and

other exogenous processes including land use change and forestry. Similar to Traeger
(2021), we define ϕ̃ = [(1− βΦ)−1]11. Instead of a simple decay, it captures how much
carbon inserted into the atmosphere remains in or returns to the atmosphere over the
discounted infinite time horizon.

Temperature dynamics. In the medium to long run a new level of radiative forcing
implies the new atmospheric equilibrium temperature T0,t = s

η
Ft. Following ACE, we

model the evolution of atmospheric temperature T1,t as a generalized mean of last pe-
riod’s atmospheric temperature (persistence), the last period’s ocean temperature (cur-
rently cooling), and the new equilibrium temperature corresponding to radiative forcing
T0,t. Similarly ocean temperature T2,t evolves as a generalized mean of own past and
atmospheric temperature

T1,t+1 =
1

ξ1
log
(
(1− σforc − σ21) exp (ξ1 T1,t) + σforc exp (ξ1 T0,t) + σ21 exp (ξ1 T2,t)

)
T2,t+1 =

1

ξ1
log
(
(1− σ12) exp (ξ1 T2,t) + σ12 exp (ξ1 T1,t)

)
(27a)

with ξ1 = log 2
s

. We rewrite these equations in terms of transformed temperatures τit =

exp(ξ1 Ti,t) as(
τ1,t+1

τ2,t+1

)
=

(
1− σforc − σ21 σ21

σ12 1− σ12

)
︸ ︷︷ ︸

≡σ

(
τ1,t

τ2,t

)
+

(
σforc exp

(
log(2)

η
Ft

)
0

)
. (27b)

Similar to Traeger (2021), we define

σ̃ =
[
(1− β σ)−1

]
1,1
, (28)

characterizing the discounted heat increase over the infinite time horizon resulting from
a heat influx into the atmosphere in the present.

B Solving the Bellman equation: Long-run Uncertainty

Consumption rate and equations of motion under uncertainty. Solving the model
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is simpler when controlling consumption in terms of the consumption rate

xt =
Ct

Yt [1−Dt (T1,t, St,mt)]
. (29)

where the geoengineering damges in equation (3) now takes on its stochastic form of
equation (13).11 Using the homogeneity of the production function

Yt = F(At, Kt, N t, Et) = Kκ
t F(At, Kt, N t, Et), (30)

we transform the utility from consumption as

logCt = log xt + κ logKt + logF(At, Kt, N t, Et) + ξ0 (1− τ1,t)− d St + πd
t − a(mt − 1).

(31)

Defining log-capital as kt = logKt, the equation of motion for capital is

kt+1 = κ kt + logF(At, Kt, N t, Et) + log(1− xt) + ξ0 (1− τ1,t)− d St + πd
t − a(mt − 1).

(32)

Including long-run uncertainty, the radiative forcing equation (15) is

Ft(mt, St) =
η

log(2)
log

(
f0 + f1mt +

(
f2 − f3

(
mt

St

)n)
St + πfl

t + πfn
t

)
. (33)

bringing the equation of motion (27b) for temperature

τ t+1 = στ t + σforc exp

(
log(2)

η
Ft

)
e1

to the form

τ t+1 = στ t + σforc

(
f0 + f1mt +

(
f2 − f3

( mt

Sunc
t

)n)
Sunc
t + πfl

t + πfn
t

)
e1 (34)

The new states capturing the persistence of the stochastic realizations πd
t+1, π

fl
t+1, and πfn

t+1

11We note that πd
t is known at the time of consumption choice.
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follow the equations (14), (16), and (19)

πd
t+1 = ϵdt

√
St + Γd πd

t ; πfl
t+1 = ϵflt

√
St + Γfl πfl

t ; πfn
t+1 = ϵfnt

√(
mt

St

)n

St + Γfn πfn
t

(35)

Bellman equation. We solve for the optimal policy using dynamic programming. The
Bellman equation is

V (kt, τ t,M t,Rt, π
d
t , π

fl
t , πfn

t , t) = max
xt,N t,Kt,Et,St

{
log xt + κ kt + logF(At, Kt, N t, Et)

+ξ0 (1− τ1,t)− d St + πd
t − a(mt − 1) (36)

+
β

α
log
(
Et exp[αV (kt+1, τ t+1,M t+1,Rt+1, π

d
t+1, π

fl
t+1, π

fn
t+1, t+ 1)]

)}

with Rt+1,M t+1, τ t+1, and kt+1, πd
t+1, π

fl
t+1, and πfn

t+1 following the equations of motion
(25), (26), (27b), and (32), (14), (16), and (19). We guess the following linear affine value
function

V (kt, τ t,M t,Rt, π
d
t , π

fl
t , πfn

t , t) =

φk kt +φT
τ τ t +φT

M M t +φT
R,t Rt + φd

π π
d
t + φfl

π πfl
t + φfn

π πfn
t + φt.

and will confirm our guess later on. Using this value function, we obtain the Bellman
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equation

φk kt +φT
τ τ t+ φT

M M t +φT
R,t Rt + φd

π π
d
t + φfl

π πfl
t + φfn

π πfn
t + φt

= max
xt,N t,Kt,Et,St

{
log xt + κ kt + logF(At, Kt, N t, Et) + ξ0 (1− τ1,t)− d St − a(mt − 1)

+ πd
t︸︷︷︸

utility

+λK
t (1−

IK∑
i=1

Ki,t) + λN
t (1−

IN∑
i=1

Ni,t)

+β φk

(
κ kt + logF(At, Kt, N t, Et) + log(1− xt) + ξ0 (1− τ1,t)

−d St − a(mt − 1)
)

+βφT
τ

(
στ t + σforc

(
f0 + f1mt +

(
f2 − f3

(mt

St

)n)
St

)
e1

)
+βφT

M (ΦM t + ẽt) + βφT
R,t+1

(
Rt −Ed

t

)
+ β φt+1

+
β

α
log
(
Et exp

[
α
(
φd
π ϵ

d
t

√
St + φd

π Γd πd
t︸ ︷︷ ︸

πd
t+1

+φk πd
t︸ ︷︷ ︸

kt+1

)])

+
β

α
log
(
Et exp

[
α
(
φfl
π ϵflt

√
St + φfl

π Γfl πfl
t︸ ︷︷ ︸

πfl
t+1

+φτ1 σforc πfl
t︸ ︷︷ ︸

τt+1

)])

+
β

α
log
(
Et exp

[
α
(
φfn
π ϵfnt

√(
mt

St

)n

St + φfn
π Γfn πfn

t︸ ︷︷ ︸
πfn
t+1

+φτ1 σforc πfn
t︸ ︷︷ ︸

τt+1

)])}
.

The argument of the expected value operator on the r.h.s. of the Bellman equation contains
both normally distributed components and determinsitic components, all of which appear
in the exponential. Conditional on information in period t, all period t states are known
and only those terms depending on the ϵ-shocks are stochastic. Deterministic terms can
simply be pulled through the log-exp concatination (and the risk aversion parameter α

cancels). To evaluate the stochastic terms, we note that M(z) = Et exp(zϵ) defines the
moment generating function of the stochastic variable ϵ. In our case ϵ ∼ N (0, σ2) and
the moment generating function of the normal distribution is M(z) = exp(µz + σ2

2
z2),

where in our case µ = 0. Then, the stochastic components of the Bellman equation are
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of the form

β

α
log
(
Et exp(αz̄ϵ)

)
= βα

σ2

2
z̄2

where z̄ stands for the terms accompanying ϵd, ϵfl, or ϵfl respectively. Evaluating the
damage and forcing uncertainties and simplifying yields

φk kt +φT
τ τ t+ φT

M M t +φT
R,t Rt + φd

π π
d
t + φfl

π πfl
t + φfn

π πfn
t + φt

= max
xt,N t,Kt,Et,St

{
log xt + κ kt + logF(At, Kt, N t, Et) + ξ0 (1− τ1,t)− d St − a(mt − 1)

+λK
t (1−

IK∑
i=1

Ki,t) + λN
t (1−

IN∑
i=1

Ni,t)

+β φk

(
κ kt + logF(At, Kt, N t, Et) + log(1− xt) + ξ0 (1− τ1,t)

−d St − a(mt − 1)
)

+βφT
τ

(
στ t + σforc

(
f0 + f1mt +

(
f2 − f3

(mt

St

)n)
St

)
e1

)
+βφT

M (ΦM t + ẽt) + βφT
R,t+1

(
Rt −Ed

t

)
+ β φt+1

+αβ 2(φd
π)

2 (σ
d)2

2
St +

(
(1 + β φk) + β φd

π Γ
d
)
πd
t

+αβ (φfl
π )

2 (σ
fl)2

2
St + (φτ1 σforc + φfl

π Γfl)β πfl
t

}
.

+αβ (φfn
π )2

(σfn)2

2

(mt

St

)n
St + (φτ1 σforc + φfn

π Γfn)β πfn
t

}
. (37)

To get equation (37) we calculate

(i) πd
t︸︷︷︸

utility

+
β

α
log
(
Et exp

[
α
(
φd
π ϵ

d
t

√
St + φd

πΓ
d πd

t︸ ︷︷ ︸
πd
t+1

+φk π
d
t︸ ︷︷ ︸

kt+1

)])

=
β

α
α22(φd

π)
2 (σ

d)2

2
St + (1 + βφk)π

d
t + βφd

πΓ
dπd

t

= αβ2(φd
π)

2 (σ
d)2

2
St +

(
(1 + βφk) + βφd

πΓ
d
)
πd
t
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(ii)
β

α
log
(
Et exp

[
α
(
φfl
π ϵflt

√
St + φfl

π Γfl πfl
t︸ ︷︷ ︸

πfl
t+1

+φτ1 σforc πfl
t︸ ︷︷ ︸

τt+1

)])

=
β

α
α2(φfl

π )
2 (σ

fl)2

2
St + β φτ1σforc πfl

t + β φfl
π Γfl πfl

t

= αβ(φfl
π )

2 (σ
fl)2

2
St + (φτ1 σforc + φfl

π Γfl)β πfl
t

(iii) and the analoguous calculation for πfn.

First order conditions. Maximizing the right hand side over xt yields

1

xt

− β φk
1

1− xt

= 0 =⇒ xt =
1

1 + β φk

. (38)

Maximizing the right hand side over Ki,t yields

(1 + β φk)

∂F(At,Kt,N t,Et)
∂Ki,t

F(At, Kt, N t, Et)
= λK

t

which is equivalent to

Ki,t =
σY,Ki

(At, Kt, N t, Et)
IK∑
i=1

σY,Ki
(At, Kt, N t, Et)

(39)

with

σY,Ki
(At, Kt, N t, Et) ≡

∂F(At, Kt, N t, Et)

∂Ki,t

Ki,t

F(At, Kt, N t, Et)
.

Similarly, the first order conditions for the labor input is

(1 + β φk)

∂F(At,Kt,N t,Et)
∂Ni,t

F(At, Kt, N t, Et)
= λN

t
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and hence

Ni,t =
σY,Ni

(At, Kt, N t, Et)
IN∑
i=1

σY,Ni
(At, Kt, N t, Et)

(40)

with

σY,Ni
(At, Kt, N t, Et) ≡

∂F(At, Kt, N t, Et)

∂Ni,t

Ni,t

F(At, Kt, N t, Et)

The first order condition for the optimal input of fossil fuels is given by

(1 + β φk)

∂F(At,Kt,N t,Et)
∂Ei,t

F(At, Kt, N t, Et)
= β(φR,i,t+1 − φM1)

which is equivalent to

Ei,t =
(1 + β φk)σY,Ei

(At, Kt, N t, Et)

β(φR,i,t+1 − φM1)
(41)

with

σY,Ei
(At, Kt, N t, Et) ≡

∂F(At, Kt, N t, Et)

∂Ei,t

Ei,t

F(At, Kt, N t, Et)
.

Spelling out the part of the Bellman equation (37) that depends on sulfur we find

BS
t = β φτ1 σforc f2 St − β φτ1 σforcf3m

n
t S

(1−n)
t − (1 + β φk) d St + αβ 2(φd

π)
2 (σ

d)2

2
St(42)

+αβ (φfl
π )

2 (σ
fl)2

2
St + αβ (φfn

π )2
(σfn)2

2
mn

t S
(1−n)
t .

The first order condition for optimal sulfur deployment then results in12

β φτ1 σforcf2 + β φτ1 σforc(n− 1)f3m
n
t S

−n
t )− (1 + β φk) d+ αβ 2(φd

π)
2 (σ

d)2

2

+αβ (φfl
π )

2 (σ
fl)2

2
+ (1− n)αβ (φfn

π )2
(σfn)2

2
mn

t S
−n
t = 0.

12The second derivative gives −nβ φτ1 σforc(n − 1)f3 m
n
t S

−(1+n)
t < 0 so that the condition indeed

identifies the maximal value deriving from sulfur deployment in a given period.
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Solving for St leads to

Sunc
t =

 (1− n)
(
−β φτ1 σforc f3 + αβ (φfn

π )2 (σ
fn)2

2

)
(1 + β φk) d− β φτ1 σforcf2 − αβ 2(φd

π)
2 (σ

d)2

2
− αβ (φfl

π )2
(σfl)2

2


1
n

︸ ︷︷ ︸
≡zunc

mt (43)

Solving the system of first order conditions gives us N ∗
t (At, φk,φM ,φR,t+1),

K∗
t (At, φk,φM ,φR,t+1), and E∗

t (At, φk,φM ,φR,t+1) which are independent of the states
and Sunc

t (φk, φτ1, φ
d
π, φ

fl
π ,M1,t) which depends on the atmospheric carbon stock. In the

following we show that given these optimal controls the maximized Bellman equation is
linear in all states.

Shadow values. Inserting the optimal control rules into the maximized Bellman
equation gives us

φk kt +φT
τ τ t +φT

M M t +φT
R,t Rt + φd

π π
d
t + φfl

π πfl
t + φt

= log x∗
t + κ kt + logF(At, K∗

t , N
∗
t , E

∗
t ) + ξ0 (1− τ1,t)− d Sunc

t − a(mt − 1)

+β φk

(
κ kt + logF(At, K∗

t , N
∗
t , E

∗
t ) + log(1− x∗

t ) + ξ0 (1− τ1,t)− d Sunc
t − a(mt − 1)

)
+βφT

τ

(
στ t + σforc

(
f0 + f1mt +

(
f2 − f3

( mt

Sunc
t

)n)
Sunc
t

)
e1

)
+βφT

M (ΦM t + ẽt) + βφT
R,t+1

(
Rt −Ed

t

∗
)
+ β φt+1

+αβ2(φd
π)

2 (σ
d)2

2
Sunc
t +

(
(1 + βφk) + βφd

πΓ
d
)
πd
t

+αβ2(φfl
π )

2 (σ
fl)2

2
Sunc
t + (φτ1 σforc + φfl

π Γ
fl)β πfl

t

+αβ (φfn
π )2

(σfn)2

2
mn

t S
unc
t

(1−n) + (φτ1 σforc + φfn
π Γfn)β πfn

t
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Arranging terms with respect to their states and using the propensity definition zunc yields

φk kt +φT
τ τ t +φT

M M t +φT
R,t Rt + φd

π π
d
t + φfl

π πfl
t + φfn

π πfn
t + φt

=
[
(1 + β φk)κ

]
kt +

[
βφT

τ σ − (1 + β φk)ξ0 e
T
1

]
τ t

+
[
βΦφT

M +
(
(β φτ1 σforc)

(
f1 + f2 z

unc − f3 (z
unc)1−n

)
+ αβ 2(φd

π)
2 (σ

d)2

2
zunc

+αβ (φfl
π )

2 (σ
fl)2

2
zunc + αβ (φfn

π )2
(σfn)2

2
(zunc)1−n

−(1 + β φk)(a+ d zunc)
)
M−1

pre e
T
1

]
M t +

[ (
(1 + β φk) + β φd

π Γ
d
) ]

πd
t

+
[
(φτ1 σforc + φfl

π Γfl)β
]
πfl
t +

[
(φτ1 σforc + φfn

π Γfn)β
]
πfn
t +

[
βφT

R,t+1

]
Rt

+ log x∗
t + β φk log(1− x∗

t ) + (1 + β φk) logF(At, K∗
t , N

∗
t , E

∗
t )

+(1 + β φk)(ξ0 + a) + β φτ1 σforc f0 + βφT
M ẽt − βφT

R,t+1 E
d
t

∗
+ β φt+1. (44)

Matching the coefficients of the new state πd
t on the r.h.s. Bellman equation (see above)

with the term φd
ππ

d
t on the l.h.s. Bellman equation delivers

φd
π =

(
(1 + β φk) + β φπ Γ

d
)

⇔ (1− β Γd )φd
π = (1 + β φk)

⇔ φd
π =

1 + β φk

1− β Γd

and similarly for the state πfl
t

φfl
π = (φτ1 σforc + φfl

π Γfl)β

⇔ (1− Γfl β )φfl
π = φτ1 σforc β

⇔ φfl
π =

φτ1 σforc β

1− β Γfl

and for the state φfn
π

φfn
π = (φτ1 σforc + φfn

π Γfn)β

⇔ (1− Γfn β )φfn
π = φτ1 σforc β

⇔ φfn
π =

φτ1 σforc β

1− β Γfn
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Coefficient matching for capital leads to

φk = (1 + β φk)κ ⇔ φk =
κ

1− β κ
(45)

Coefficient matching with respect to transformed temperatures delivers

φT
τ = −ξ0 (1 + β φk) e

T
1 (1− β σ)−1.

where we denote the entries of the inverted matrix as follows(
σ̃11 σ̃12

σ̃21 σ̃22

)
≡ (1− β σ)−1

yielding

σ̃11 =
[
(1− β σ)−1

]
1,1

(46)

where [·]1,1 denotes the first element of the inverted matrix in square brackets. Thus,
using φk from equation (45) transformed atmospheric temperature is given by

φτ1 = −ξ0 (1 + β φk)σ̃11 (47)

= − ξ0
1− β κ

σ̃11

Using the solutions for φk and φτ1 in φd
π, φfl

π and φfn
π leads to

φd
π =

(1− β κ)(1− β Γd)
(48)

φfl
π = − ξ0 σ̃11 σforc β

(1− β κ)(1− β Γfl)
(49)

φfn
π = − ξ0 σ̃11 σforc β

(1− β κ)(1− β Γfn)
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Coefficient matching with respect to the atmospheric carbon stock yields

φ⊤
M =

(
(β φτ1 σforc)

(
f1 + f2 z − f3 z

1−n
)
+ αβ 2(φd

π)
2 (σ

d)2

2
zunc + αβ (φfl

π )
2 (σ

fl)2

2
zunc

+αβ (φfn
π )2

(σfn)2

2
(zunc)1−n − (1 + β φk)(a+ d z)

)
M−1

pre e
⊤
1 (1− βΦ)−1. (50)

We define
ϕ̃ij =

[
(1− βΦ)−1

]
ij

for i, j ∈ {1, 2, 3},

yielding

ϕ̃11 =
[
(1− βΦ)−1

]
1,1

(51)

where [·]1,1 denotes the first element of the inverted matrix in square brackets. Note that
for ease of representation we drop the subscript of the term ϕ̃11 and instead use ϕ̃.

Coefficient matching with respect to the resource stock yields

φT
R,t = βφT

R,t+1 ⇔ φR,t = β−tφR,0 (Hotelling’s rule).

The initial resource values φT
R,0 depend on the set up of the economy, including assump-

tions about production and the energy sector. Given the coefficients and the optimal rate
of consumption equation (44) turns to the following condition:

φt − β φt+1 = log x∗
t + β φk log(1− x∗

t ) + (1 + β φk) logF(At, K∗
t , N

∗
t , E

∗
t )

+ (1 + β φk)(ξ0 + a) + β φτ1 σforc f0 + βφT
M ẽt − βφT

R,t+1E
d
t

∗ (52)

This condition will be satisfied by picking the sequence φ0, φ1, φ2, .... The additional
condition limt→∞ βtV (·) = 0 ⇒ limt→∞ βtφt = 0 pins down this initial value φ0.

Optimal level of sulfur. We insert (45), (47), (48) and (49) for the shadow values
φk, φτ1, φd

π and φfl
π into our expression for optimal sulfur deployment (43). Note that

for ease of representation we use the following definition, σ̃ = σ̃11 σforc. Further, we define
γ = β ξ0 σ̃, which delivers
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Sunc
t =


(1− n) γ f3 +

αβ (1−n)
(1−β κ)

[ forcing uncertainty fn︷ ︸︸ ︷
γ2 4

(1− β Γfn)2
(σfn)2

2

]

d+ γ f2 − αβ
(1−β κ)

[
(1− β Γd)2

(σd)2

2︸ ︷︷ ︸
damage uncertainty

+
γ2

(1− β Γfl)2
(σfl)2

2︸ ︷︷ ︸
forcing uncertainty fl

]


1
n

mt

Social cost of carbon. Inserting (45), (47), (48) and (49) for the shadow values φk,
φτ1, φd

π, φfl
π and φfn

π into our equation for the shadow value of the atmospheric carbon
stock (50) and using the definition γ = β ξ0 σ̃ delivers

φM1 = − 1

1− β κ

(
γ
(
f1 + f2 z

unc − f3 (z
unc)1−n

)
+ a+ d zunc

−αβ

[
(1− β Γd)2

(σd)2

2︸ ︷︷ ︸
damage uncertainty

+
γ2

(1− β Γfl)2
(σfl)2

2︸ ︷︷ ︸
forcing uncertainty fl

+
γ2 4

(1− β Γfn)2
(σfn)2

2
(zunc)−n︸ ︷︷ ︸

forcing uncertainty fn

]
zunc

)
M−1

pre ϕ̃

The SCC is the negative of the shadow value of the atmospheric carbon stock expressed
in money-measured consumption units

SCCunc = −(1− β κ)Y net
t φM1

=
Y net
t

Mpre

(
a+ f1 γ −

(
f3

(zunc)n
− f2

)
γzunc + dzunc

−αβ

[
(1− β Γd)2

(σd)2

2︸ ︷︷ ︸
damage uncertainty

+
γ2

(1− β Γfl)2
(σfl)2

2︸ ︷︷ ︸
forcing uncertainty fl

+
γ2 4

(1− β Γfn)2
(σfn)2

2

1

(zunc)n︸ ︷︷ ︸
forcing uncertainty fn

]
zunc

)
ϕ̃.
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C Climate Change Uncertainty

Dynamic equations. Following Traeger (2018), we model the basic long-run tempera-
ture risk resulting from atmospheric carbon dioxide by an autoregressive gamma process
yt, which we shift by a deterministic process yot to adjust temperature expectations. As a
result of this base risk, the radiative forcing equation gains the additional contribution

zt ≡ yt − yot where

yot+1 = γzyot + (δτ − ϵ(c, δτ )) (m− ητ )

is the expectation shifter process and yt is an autoregressive gamma process Gourieroux
and Jasiak (2006) with scale paramter c and shape parameter δτ

c
(m− ητ ). Conditional

expectation and variance of the shifted autoregressive gamma process are then

Et zt+1 = γzzt︸︷︷︸
shock

persistence

+ σforcm︸ ︷︷ ︸
deterministic forcing

+ ϵ(c, h) (m− ητ )︸ ︷︷ ︸
expectation offset

Vart zt+1 = 2Vart yt+1 =
2 c
[

2γzyt︸ ︷︷ ︸
variance

persistence

+ δτ (m− ητ )︸ ︷︷ ︸
base climate

forcing uncertainty

]
.

The function ϵ(c, δτ ) is a given function that has to be calibrated together with the
scale parameter c and the parameter δτ that weighs the current endogenously generated
shocks against the persistence of the uncertainty. The parameter ητ ∈ (0, 1) calibrates the
prevailing uncertainty under (close to) preindustrial concentrations. We refer to a detailed
discussion of this formulation of temperature feedback uncertainty to Traeger (2018). The
cumulant generating function of the underlying autoregressive gamma process yt is

Gyt+1(u) = log [E (exp(uyt+1)|yt)] = −νt log(1− uc) + u
1−uc

γyt. (53)

and will be helpful to evaluate expectations emerging on the r.h.s. of the Bellman equation.
The new states yt and yot will again enter our value function linearly with shadow values
φy and φyo .

In addition, we introduce a stochastic process that captures the uncertainty in the
interaction term between carbon dioxide forcing and sulfur-based solar geoengineering.
It is of the same form as the process in equation (17) governing sulfur-based forcing
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uncertainty

πcn
t+1 = ϵcnt

√(
mt

St

)n

St + Γcn πcn
t . (54)

We allow for correlation beetwen the uncertainties governing the interaction of sulfur-
based and carbon dioxide-based changes in forcing. As a result the shocks ϵcnt and ϵfnt

have the correlation coefficient ρn. The interaction uncertainty introduces the new state
πcn
t , which will enter the value function linearly with shadow value φcn

π .
The full forcing equation takes the form

Ft(mt, St) =
η

log(2)
log

(
f0+f1mt+

(
f2 − f3

(
mt

St

)n)
St+πfl

t +πfn
t +zt+1+πcn

t

)
. (55)

bringing the equation of motion (27b) for temperature to the form

τ t+1 = στ t + σforc

(
f0 + f1mt +

(
f2 − f3

( mt

Sunc
t

)n)
Sunc
t + πfl

t + πfn
t + zt+1 + πcn

t

)
e1.

(56)

We followed Traeger (2018) in using a slightly different convention for the shifted autore-
gressive gamma process making τ1,t+1 a function of zt+1 (rather than zt). The additional
parameter can be normalized away, but we introduce the parameter explicitly because it
allows us to adopt Traeger’s (2018) calibration of the process, who works with a different
normalization of radiative forcing implying = 1

σforc .
Changes in the Bellman equation. We first characterize the new terms arising on

the r.h.s. of the Bellman equation as a result of the base climate uncertainty. The new
stochastic process gives rise to the new equations of motion for the new states yot and yt,
and both of these also show up in the equation of motion of temperature. Using equation
(53) we find the the new terms on the r.h.s. Bellman equation where we have set = σforc

β

α
log
(
Et exp

[
α
(
φτ,1(yt+1 − yot+1) + φyyt+1 + φyoy

o
t+1)

)])
=−βφτ,1γ

zyot − βφτ,1(δτ − ϵ(c))mt + βφτ,1(δτ − ϵ(c))
(
− ητ

)
− δτβ

αc
(mt − ητ ) log(1− α[φτ

y + φτ,1]c) + β
φτ
y+φτ,1

1−α[φτ
y+φτ,1]c

γzyt

+βφτ
yoγ

zyot + βφτ
yo(1− ϵ(c))mt + βφτ

yo(1− ϵ(c))
(
− ητ

)
(57)

The interactive uncertainty has the same form as the uncertainty already introduced in
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the context of sulfur-based cooling as equation (17). Because we allow for correlation
between the uncertainty in equations (17) and equation (54) we have to calculate their
expectations jointly and find

β

α
log

(
Et exp

[
α
(
φfn
π πfn

t+1 + φcn
π πcn

t+1 + φτ,1σforc(π
fn
t + πcn

t )
)])

=
β

α
log

(
Et exp

[
α
(
φfn
π ϵfnt

√(mt

St

)n
St + φcn

π ϵcnt

√(mt

St

)n
St

)])
+βφfn

π Γfn πfn
t + βφcn

π Γcn πcn
t + βφτ,1σforc(π

fn
t + πcn

t )

=αβ (φfn
π )2

(σfn)2

2

(
mt

St

)n

St + αβ φfn
π φcn

π ρσfnσcn

(
mt

St

)n

St

+αβ (φcn
π )2

(σcn)2

2

(
mt

St

)n

St

+(φτ1 σforc + φfn
π Γfn)β πfn

t + (φτ1 σforc + φcn
π Γcn)β πcn

t

=αβ

(
(φfn

π )2
(σfn)2

2
+ φfn

π φcn
π ρσfnσcn + (φcn

π )2
(σcn)2

2

)(mt

St

)n
St

+(φτ1 σforc + φfn
π Γfn)β πfn

t + (φτ1 σforc + φcn
π Γcn)β πcn

t (58)

Only the first line affects the optimal deployment of sulfur. The second line results in
the same coefficient matching condition for πfn

t as before and the exact analogue for πcn
t

delivering the shadow values

φfn
π =

φτ1 σforc β

1− β Γfn
= − ξ0 σ̃11 σforc β

(1− β κ)(1− β Γfn)
and

φcn
π =

φτ1 σforc β

1− β Γcn
= − ξ0 σ̃11 σforc β

(1− β κ)(1− β Γcn)
.

Optimal sulfur deployment. The new terms on the r.h.s. Bellman equation con-
taining sulfur will affect the first order conditions for sulfur deployment. Such terms
only arise in the interaction uncertainty stemming from equation (58), not from the base
uncertainty. Expanding the definition in equation (42) for the newcomers we have

BS
t = β φτ1 σforc f2 St − β φτ1 σforcf3m

n
t S

(1−n)
t − (1 + β φk) d St + αβ 2(φd

π)
2 (σ

d)2

2
St

+αβ (φfl
π )

2 (σ
fl)2

2
St + αβ (φfn

π )2
(σfn)2

2
mn

t S
(1−n)
t

+αβ

(
2φfn

π φcn
π ρσfnσcn + (φcn

π )2
(σcn)2

2

)
mn

t S
(1−n)
t
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where the last line contains the new terms, which enter the equation for optimal deploy-
ment in the same way as the other terms proportional to mn

t S
(1−n)
t . Thus, optimizing the

above equation w.r.t. sulfur deployment (taking the FOC) delivering the new deployment
equation

Sjoint
t = mt ×(n− 1)

(
β φτ1 σforc f3 − αβ

(
(φfn

π )2 (σ
fn)2

2
+ 2φfn

π φcn
π ρσfnσcn + (φcn

π )2 (σ
cn)2

2

))
(1 + β φk) d− β φτ1 σforcf2 − αβ 2(φd

π)
2 (σ

d)2

2
− αβ (φfl

π )2
(σfl)2

2


1
n

︸ ︷︷ ︸
≡zjoint

(59)

Inserting the equations for the shadow values and simplifying the resulting expressions
delivers

Sjoint
t = mt ×
(1− n) γ f3 − −αβ (1−n)

(1−β κ)
γ2

2

[ geo nonlinear︷ ︸︸ ︷
(σfn)2

(1− β Γfn)2
+

correlation geo and clim︷ ︸︸ ︷
2ρσfnσcn

(1− β Γfn)(1− β Γcn)
+

clim interaction︷ ︸︸ ︷
(σcn)2

(1− β Γcn)2

]

d+ γ f2 +
−αβ

2(1−β κ)

[
(σd)2

(1− β Γd)2︸ ︷︷ ︸
damage uncertainty

+
γ2 (σfl)2

(1− β Γfl)2︸ ︷︷ ︸
geo linear

]


1
n

Social cost of carbon. The terms proportional to yoy and yt in equation (57) require
the following equality in the Bellman equation (which has to hold for all levels of the state
variables):

φτ
yoy

o
y + φτ

y yt + ... =...− βφτ,1γ
zyot + β

φτ
y+φτ,1

1−α[φτ
y+φτ,1]c

γzyt + βφτ
yoγ

zyot

Coefficient matching delivers the following equations for the shadow values of the new
state variables resulting from basic climate uncertainty

φτ
yo = β(φτ

yo − φτ,1)γ
z (60)

φτ
y = β

φτ
y+φτ,1

1−αc(φτ
y+φτ,1)

γz.

We note that these are currently not yet explicit equation as the prices appear on both
sides. In addition, equation (57) delivers the following new terms proportional to the
carbon state

−βφτ,1(1− ϵ(c))mt − β 1
αc
mt log(1− α[φτ

y + φτ,1]c) + βφτ
yo(1− ϵ(c))mt
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and equation (58) delivers the terms

αβ

(
(φfn

π )2
(σfn)2

2
+ 2φfn

π φcn
π ρσfnσcn + (φcn

π )2
(σcn)2

2

)
(zjoint)1−nmt

where the first term in bracket was already present earlier as it results from the nonlinear
geoengineering uncertainty. These terms change add to the coefficients in front of the
carbon stock in the Bellman equation and change the coefficient matching condition,
equation (50), defining the shadow value of carbon to

φ⊤
M =

(
(β φτ1 σforc)

(
f1 + f2 z − f3 z

1−n
)
+ αβ 2(φd

π)
2 (σ

d)2

2
zjoint + αβ (φfl

π )
2 (σ

fl)2

2
zjoint

+αβ

(
(φfn

π )2
(σfn)2

2
+ φfn

2πφ
cn
π ρσfnσcn + (φcn

π )2
(σcn)2

2

)
(zjoint)1−n (61)

+(φτ
yo−φτ,1)(δτ−ϵ(c))− δτ

log(1−αc(φτ
y+φτ,1))

αc
− (1 + β φk)(a+ d z)

)
M−1

pre e
⊤
1 (1− βΦ)−1.

Evaluating the new terms in the last row requires the evaluation of

φτ
yo − φτ,1 = −

(
βγz

1− βγz
+ 1

)
φτ,1 = −

1− βγz
φτ,1

using equation (60) and of

φτ
y + φτ,1 =

(
1 + θ†τ

)
1− βγz

φτ,1,

which solves the quadratic equation (60) delivering the expression

θ†τ = βγz
1 + F −

√
(1− F )2 − 4F βγz

1−βγz

1− F +
√

(1− F )2 − 4F βγz

1−βγz

≈ βγzF

1− βγz − F

using the definition F ≡ αc
1−βγzφτ,1. We refer to Traeger (2018) for more details on the
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calculation. Then

(φτ
yo−φτ,1)(δτ−ϵ(c))− δτ

log(1−αc(φτ
y+φτ,1))

αc

= −
1− βγz

φτ,1(δτ−ϵ(c))− δτ
log(1−F (1+θ†τ ))

F 1−βγzφτ,1

=
1− βγz

φτ,1

(
ϵ(c) + δτ

− log(1−F (1+θ†τ ))
F

− δτ

)
= −ξ0σ̃1,1

1

1− βκ 1− βγz

(
ϵ(c) + δτ

(
− log(1−F (1+θ†τ ))

F
− 1
))

= −γ

β

1

1− βκ

1

1− βγz

(
ϵ(c) + δτ

(
− log(1−F (1+θ†τ ))

F
− 1
)

︸ ︷︷ ︸
≡θ(c)

)

where, in the last line, we used that we have set = σforc (and the definition γ =

β ξ0 σ̃1,1σforc) and then

F = αc
σforc

1− βγz
φτ,1 = −αc

σforc

1− βγz
ξ0σ̃1,1

1

1− βκ

= −αc
γ

1− βγz

1

1− βκ
.

Inserting the shadow values including the expression derived above into equation (61)
delivers

φM1 = − 1

1− β κ

(
γ
(
f1 + f2 z

joint − f3 (z
joint)1−n

)
+ a+ d zjoint

+
−αβ

2

[
(σd)2

(1− β Γd)2︸ ︷︷ ︸
damage uncertainty

+
γ2 (σfl)2

(1− β Γfl)2︸ ︷︷ ︸
forcing uncertainty fl

]
zjoint

+
−αβγ2

2

[
(σfn)2

(1− β Γfn)2︸ ︷︷ ︸
geo nonlinear

+
2ρσfnσcn

(1− β Γfn)(1− β Γcn)︸ ︷︷ ︸
correlation geo and clim

+
(σcn)2

(1− β Γcn)2︸ ︷︷ ︸
clim interaction

]
(zjoint)1−n

+
γ

β

1

1− βγz

(
ϵ(c) + − log(1−F (1+θ†τ (F )))

F
− 1︸ ︷︷ ︸

≡θ∗(F )

)
︸ ︷︷ ︸

climate change uncertainty fn

)
M−1

pre ϕ̃ .
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Translated once again into consumption equivalents we obtain

SCCjoint = −(1− β κ)Y net
t φM1

=
Y net
t

Mpre

(
γ
(
f1 + f2 z

joint − f3 (z
joint)1−n

)
+ a+ d zjoint

−αβ

[
(1− β Γd)2

(σd)2

2︸ ︷︷ ︸
damage uncertainty

+
γ2

(1− β Γfl)2
(σfl)2

2︸ ︷︷ ︸
forcing uncertainty fl

]
zjoint

−αβγ2

2

[
(σfn)2

(1− β Γfn)2︸ ︷︷ ︸
geo nonlinear

+
2ρσfnσcn

(1− β Γfn)(1− β Γcn)︸ ︷︷ ︸
correlation geo and clim

+
(σcn)2

(1− β Γcn)2︸ ︷︷ ︸
clim interaction

]
(zjoint)1−n

+
γ

β

1

1− βγz

(
ϵ(c) + − log(1−F (1+θ†τ (F )))

F
− 1︸ ︷︷ ︸

≡θ(F (c))

)
︸ ︷︷ ︸

climate change uncertainty fn

)
ϕ̃ .

D Short-term Uncertainty

The optimization problem in the first period is essentially the one appearing on the right
hand side of the Bellman equation (36)

max
x0,N0,K0,E0,S0

log x0 + κ k0 + logF(A0, K0, N 0, E0) + ξ0 (1− τ1,0)− d S0 + πd
0 − a(m0 − 1)

+
β

α
log
(
E0 exp[αφk k1 +φT

τ τ 1 +φT
M M 1 +φT

R,1R1 + φd
π π

d
1 + φfl

π πfl
1 +φfn

π πfn
1 + φcn

π πcn
1

+φ1

)
(62)

with two important differences. First, the parameters d and f3 are uncertain in the
future. Second, conditional on d and f3 we have already solved for the shadow values
characterizing the value of the future states. These two uncertain parameters d and f3

occur directly in the expressions for next period capital (32) and next period temperature
(27b). In addition, both parameters show up directly in the shadow value for carbon
and indirectly affect the shadow value of the resource and the affine constant φt. Finally,
the damage parameter shows up in current period utility, but in the standard timing of
dynamic programming current period values are deterministic and, thus, we assume that
current period damages take the value d0 before realizing the true future value. In general,
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we pick d0 to coincide with the expected damage value.
Optimal sulfur deployment. We collected the terms on the r.h.s. of the Bellman

equation depending on sulfur deployment in equation (42). In contrast to earlier, now the
parameters d and f3 are uncertain and the equation changes to

BS
0 = β φτ1 σforc f2 S0 + αβ 2(φd

π)
2 (σ

d)2

2
S0 + αβ (φfl

π )
2 (σ

fl)2

2
S0 − d0 S0 (63)

+αβ (φfn
π )2

(σfn)2

2
mn

0 S
(1−n)
0 + αβ

(
φfn
π φcn

π ρσfnσcn + (φcn
π )2

(σcn)2

2

)
mn

0S
(1−n)
0

+
β

α
log
(
E0 exp

[
α
(
− φτ1 σforcf3m

n
0 S

(1−n)
0 − φk d S0

)])
where we already evaluated only the (orthogonal) uncertainty governing the evolution of
πfl
t and πd

t (whose terms coincide with equation 42). Defining

A ≡ β φτ1 σforc f2 + αβ 2(φd
π)

2 (σ
d)2

2
+ αβ (φfl

π )
2 (σ

fl)2

2
− d0

B ≡ −φτ1 σforc

C ≡ −φk

D ≡ αβ

(
(φfn

π )2
(σfn)2

2
+ φfn

π φcn
π ρσfnσcn + (φcn

π )2
(σcn)2

2

)
we can write equation (63) as

BS
0 = AS0+Dmn

0S
(1−n)
0 +

β

α
log
(
E0 exp

[
α
(
Bf3m

n
0 S

(1−n)
0 + C dS0

)])
(64)

Case 1: only f3 is uncertain and distributed normally. Then d = d0 is deter-
ministic. Letting f3 ∼ N (µ, σ2), we recall the moment generating function of the normal
distribution as M(z) = Et exp(zf3) = exp(µz + σ2

2
z2). Then, equation (64) becomes

BS
0 = (A+ βdC)︸ ︷︷ ︸

≡Ā

S0 + (Dmn
0+βBmn

0µ︸ ︷︷ ︸
≡B̄

)S1−n
0 + βαB2m2n

0

σ2

2︸ ︷︷ ︸
≡C̄

S2−2n
0 (65)

resulting in the first order condition for optimal sulfur deployment

Ā+ (1− n)B̄ S−n
0 + (2− 2n)C̄ S1−2n

0 = 0. (66)

Equation (66) implicitly characterizes the optimal control. In order to obtain an analytic
form for the expression we approximate the forcing non-linearity as n = 0.69 ≈ 2

3
. Then,
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the equation becomes

Ā Sn
0 + (1− n)B̄ + (2− 2n)C̄ S1−n

0 = 0.

⇔ Ā S
2
3
0 + (1− n)B̄ + (2− 2n)C̄ S

1
3
0 = 0.

Letting y ≡ S
1
3
0 , the quadratic equation Āx2+(2−2n)C̄x+(1−n)B̄ = 0 has the solution

y ≡ S
1
3
0 =

−(2− 2n)C̄ ±
√(

(2− 2n)C̄
)2 − 4Ā(1− n)B̄

2Ā

⇔ S0 =

−(2− 2n)C̄ ±
√(

(2− 2n)C̄
)2 − 4Ā(1− n)B̄

2Ā

3

(67)

Using the definitions of Ā and B we can rewrite Sjoint
t in equation (59) as

(
Sjoint
t

) 2
3 =

(
(1− n)(β B f3+D)

−Ā

)
m

2
3
t (68)

In our stochastic scenario, f3 is a random variable. In the following, we will use Sjoint
t to

denote equation (68) with f3 replaced by its expected value µ. Plugging the definitions
of B̄ and C̄ into equation (67) and using (68) in the second step yields

S0 =

−(2− 2n)βαB2m
4
3
0
σ2

2
±
√(

(2− 2n)βαB2m
4
3
0
σ2

2

)2
− 4Ā(1− n)(Dm

2
3
0+βBm

2
3
0 µ)

2Ā


3

=

(√
(Sjoint

0 )
2
3 +R2 −R

)3

where R ≡
(2− 2n)βαB2m

4
3
0
σ2

2

2Ā
. (69)

=

(√
(zjoint)

2
3 + R̄2 − R̄

)3

m0 where R̄ ≡
(2− 2n)βαB2 σ2

2

2Ā
m0.

Inserting shadow values. We insert the equations for B and Ā into (69), which
leads to

S0 =

(√
(Sjoint

0 )
2
3 +R2 −R

)3

where

R =
(1− n)βα(−φτ1 σforc)

2m
4
3
0
σ2

2

−(1 + β φk) d+ β φτ1 σforcf2 + αβ 2(φd
π)

2 (σ
d)2

2
+ αβ (φfl

π )2
(σfl)2

2

. (70)
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Inserting (45), (47), (48) and (49) for the shadow values φk, φτ1, φd
π and φfl

π into our
expression for optimal sulfur deployment (70) delivers

R =
(1− n)βα( ξ0 σ̃11 σforc

1−β κ
)2m

4
3
0
σ2

2

− 1
1−β κ

d− β ξ0 σ̃11 σforcf2
1−β κ

+ αβ
(1−β κ)2

[
1

(1−β Γd)2
(σd)2

2
+ γ2

(1−β Γfl)2
(σfl)2

2

] .
Simplifying and using the definition γ = β ξ0 σ̃ leads to

R =
(1− n)αγ ξ0 σ̃

1−β κ
m

4
3
0
σ2

2

− d− γ f2 +
αβ

(1−β κ)

[
1

(1−β Γd)2
(σd)2

2
+ γ2

(1−β Γfl)2
(σfl)2

2

] or

R̄ =
(1− n)αγ ξ0 σ̃

1−β κ
σ2

2

− d− γ f2 +
αβ

(1−β κ)

[
1

(1−β Γd)2
(σd)2

2
+ γ2

(1−β Γfl)2
(σfl)2

2

] m0 .

We further simplify the formula as follow still using S0 =

(√
(zjoint)

2
3 + R̄2 − R̄

)3

m0

with

R̄ =
−α(1− n) γ2

β(1−β κ)

d+ γ f2 − αβ
(1−β κ)

[
1

(1−β Γd)2
(σd)2

2
+ γ2

(1−β Γfl)2
(σfl)2

2

] m0
σ2

2
.

R̄ =
(1− n)µγ

d+ γ f2 − αβ
(1−β κ)

[
1

(1−β Γd)2
(σd)2

2
+ γ2

(1−β Γfl)2
(σfl)2

2

]
︸ ︷︷ ︸

≡zlin

−αγ

β(1− β κ)
m0

σ2

2µ
.

R̄ = (zlin)
2
3

−αγ

β(1− β κ)
m0

σ2

2µ︸ ︷︷ ︸
≡xold

.

where zlin is the geoengineering propensity in the absence of non-linear uncertainty, i.e.,
the uncertainty governed by equations (17) and (54).
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S0 =

(√
(zjoint)

2
3 +

(
(zlin)

2
3x
)2

− (zlin)
2
3x

)3

m0

= zjoint

√1 +

(
(zlin)2

zjoint

) 1
3

x2 −
(
(zlin)2

zjoint

) 1
3

x

3

m0

= zlin

(√(zjoint
zlin

) 2
3
+
(
(zlin)

1
3x
)2

− (zlin)
1
3x

)3

m0 with

x =
R̄

(zlin)
2
3

=
−αγ

β(1− β κ)
m0

σ2

2µ︸ ︷︷ ︸
≡x

.

The version stated in the main text defines Q =

(
(zlin)2

zjoint

) 1
3

x and uses the formulation

in the second line above. We note that without the nonlinear interaction uncertainty we
have the slightly simpler formula:

S0 =

(√
(zunc)

2
3 (1 + (zunc)

2
3x2)− (zunc)

2
3x

)3

m0

=

(
(zunc)

1
3

√
1 + (zunc)

2
3x2 − (zunc)

2
3x

)3

m0

= zunc
(√

1 + (zunc)
2
3x2 − (zunc)

1
3x

)3

m0

For our presentation in the main text we would then have Q = (zunc)
1
3x.

Social Cost of Carbon. The shadow value of atmospheric carbon depends directly
and non-linearly on f2. As a result, we have to evaluate the expectations in equation (62)
numerically.

Case 2: only f3 is uncertain and Gamma distributed. Let f3 ∼ Γ(k̄, θ) with
shape parameter k̄ and a scale parameter θ. Then, the moment generating function is
M(z) = Et exp(zf3) = (1− θz)−k̄, where we assume z < 1

θ
. Equation (63) becomes

BS
0 = (A+ dβC)︸ ︷︷ ︸

≡Ā

S0+Dmn
0S

(1−n)
0 − β

α
k̄ log

(
1− θαBmn

0 S
1−n
0

)
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resulting in the first order condition for optimal sulfur deployment

Ā+(1− n)Dmn
0S

−n
0 + (1− n)

β

α
k̄

θαBmn
0 S

−n
0

1− θαBmn
0 S

1−n
0

= 0

⇔ Ā
(
1− θαBmn

0 S
1−n
0

)
+(1− n)Dmn

0S
−n
0

(
1− θαBmn

0 S
1−n
0

)
+ (1− n)

β

α
k̄θαBmn

0 S
−n
0 = 0

⇔ Ā− ĀθαBmn
0 S

1−n
0 +(1− n)Dmn

0 S
−n
0 −(1− n)Dm2n

0 S1−2n
0 θαB + (1− n)

β

α
k̄θαBmn

0 S
−n
0 = 0

⇔ ĀSn
0 − ĀθαBmn

0 S0+(1− n)Dmn
0−(1− n)Dm2n

0 S1−n
0 θαB + (1− n)

β

α
k̄θαBmn

0 = 0

⇔ ĀSn
0 − ĀθαBmn

0 S0−(1− n)D θαBm2n
0 S1−n

0 + (1− n)

(
β

α
k̄θαB+D

)
mn

0 = 0

⇔ ĀSn
0 + (−ĀθαBmn

0 )︸ ︷︷ ︸
≡B̄

S0+
(
− (1− n)D θαBm2n

0

)
S1−n
0 + (1− n)

(
βk̄θB+D

)
mn

0︸ ︷︷ ︸
≡C̄

= 0

D.1 Joint Gamma Uncertainty

In this setting, we introduce uncertainty already at the onset of the period. Otherwise,
we would have to assume that damages during the first period are known. As a result,
the Bellman equation becomes

max
x1,N1,K1,E1,S1

1

α
log
(
E0 exp

[
α
(

(71)

log x1 + κ k1 + logF(A1, K1, N 1, E1) + ξ1 (1− τ1,1)− d S1 + πd
1 − a(m1 − 1)

+
β

α
log
(
E1 exp

[
α (φk k2 +φT

τ τ 2 +φT
M M 2 +φT

R,2R2 + φd π
d
2 + φf π

fl
2 + φ2)

]))])
We note that 1

α
log could be eliminated up to the sign (they are but a strictly monotonic

transformation); we keep them as they simplify the resulting expressions.
We assume that sulfur’s forcing uncertainty is governed by f3 ∼ Γ(k̄fl, θfl) with shape

parameter k̄fl and a scale parameter θfl. We assume that geoengineering damages are
distributed d ∼ Γ(k̄d, θd) with shape parameter k̄d and a scale parameter θd. We assume
that both random variables are independently distributed. The moment generating func-
tion of the gamma distribution is M(z) = Et exp(zf3) = (1 − θz)−k̄, where we assume
z < 1

θ
.

In evaluating equation (71), we assume that the first instance of long-term uncertainty
resolves in period 1 and, thus, is governed by the expected value operator E1 at the end
of period 1 (or the beginning of period 2). The short-term uncertainty, i.e., our gamma
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distributed parameters d and f3, are governed by the immediate uncertainty evaluated by

E0. Collecting again only terms depending on S0, equation (63) becomes

BS
0 =

1

α
log
(
E0 exp

[
α
(
β φτ1 σforc f2 S0

+αβ 2(φd
π)

2 (σ
d)2

2
S0 + αβ (φfl

π )
2 (σ

fl)2

2
S0 − d S0

+αβ

(
(φfn

π )2
(σfn)2

2
+ φfn

π φcn
π ρσfnσcn + (φcn

π )2
(σcn)2

2

)
mn

0S
(1−n)
0

−βφτ1 σforcf3m
n
0 S

(1−n)
0 − βφk d S0

)])
= β φτ1 σforc f2 S0 + αβ 2(φd

π)
2 (σ

d)2

2
S0 + αβ (φfl

π )
2 (σ

fl)2

2︸ ︷︷ ︸
≡A

S0

+αβ

(
(φfn

π )2
(σfn)2

2
+ φfn

π φcn
π ρσfnσcn + (φcn

π )2
(σcn)2

2

)
mn

0︸ ︷︷ ︸
≡G

S
(1−n)
0

+
1

α
log
(
E0 exp

[
α
(
− βφτ1 σforcf3m

n
0 S

(1−n)
0 − (1 + βφk)d S0

)])
= AS0 +GS

(1−n)
0 − k̄fl

α
log
(
1 + θflβαφτ1 σforc m

n
0 S

1−n
0

)
− k̄d

α
log
(
1 + θdα(1 + βφk)S0

)
(72)

Equation (72) delivers the first order condition for optimal sulfur deployment

A− k̄fl

α

(1− n)θflβαφτ1 σforc m
n
0 S

−n
0

1 + θflβαφτ1 σforc mn
0 S

1−n
0

− k̄d

α

θdα(1 + βφk)

1 + θdα(1 + βφk)S0

= 0.

Defining as well (note: A, B, C differ here sligthtly from above definitions)

B ≡ αβ φτ1 σforc

C ≡ α(1 + β φk)

the equation can be rewritten as

A+(1− n)GS−n
0 − k̄fl

α

(1− n)θflBmn
0 S

−n
0

1 + θflBmn
0 S

1−n
0

− k̄d

α

θdC

1 + θdC S0

= 0. (73)

We solve equation (73) numerically. The mean of the Gamma distribution is µ = kθ, the
variance is σ2 = kθ2. We determine shape parameters using our deterministic best-guess-
values for µ and picking σ. Observing that σ2 = kθ2 = µθ we then obtain the scale and
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shape parameters as

θi =
σ2
i

µi

and ki =
µi

θi
for i ∈ {f, d}.

If we replace the gamma distribution over f3 with a normal distribution, then we simply
replace the corresponding gamma term above with the normal version from equation (65)
and find the implicit equation

A+(1− n)GS−n
0 − k̄fl

α

(1− n)θflBmn
0 S

−n
0

1 + θflBmn
0 S

1−n
0

− φτ1 σforcβm
n
0µS1−n

0

+α(φτ1)
2 (σforc)

2β2m2n
0

σ2

2
S2−2n
0 = 0.
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