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ABSTRACT  
SPATIAL DISTRIBUTION OF HOUSING 
LIQUIDITY* 

Francisco Amaral, Mark Toth and Jonas Zdrzalek 

This paper examines the relationship between location, liquidity, and prices in housing markets. We 

construct spatial datasets for German and U.S. cities and show that liquidity and prices decline with 

distance to the city center. We build and estimate a spatial housing search model and demonstrate that 

travel costs determine the spatial distribution of liquidity and prices. In a counterfactual analysis, we 

find that frictional illiquidity reduces prices in the outskirts by 7% relative to the center and explains 19% 

of the spatial price differences. Our findings highlight the importance of demand-side preferences for 

asset pricing. 
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1 Introduction
Transactions in housing markets are impeded by search frictions and typically take months to

complete (see, for example, Ngai and Tenreyro, 2014; Piazzesi, Schneider, and Stroebel, 2020).

This makes housing a particularly illiquid asset class, with sizable implications for business

cycles, in particular during the Great Recession (Head, Lloyd-Ellis, and Sun, 2014; Garriga and

Hedlund, 2020). Moreover, in contrast to other assets, housing is tied to its location. Although

housing market liquidity varies across space as much as it varies across the business cycle (Jiang,

Kotova, and Zhang, 2024), we know little about the determinants of this spatial variation. In

this paper, we show that location preferences explain spatial differences in housing liquidity

and prices. Our results imply that demand-side preferences determine equilibrium prices of

heterogeneous, illiquid assets.

Scarcity of data has so far limited our knowledge about the spatial variation in housing

liquidity. We fill this gap by building spatial datasets on housing liquidity and prices for cities

in two of the largest housing markets in the world. We empirically show that housing prices and

various measures of housing liquidity decrease with distance to the city center in both German

and U.S. cities, even when taking into account spatial differences in property characteristics,

income, and demographics. These spatial differences are comparable in magnitude to cyclical

fluctuations in housing prices and liquidity. To rationalize our results, we build a quantitative

urban housing model with search frictions. In our model, an increasing cost of travel to the

city center decreases market tightness and therefore housing market liquidity. Facing less tight

markets, sellers reduce their offered prices. We estimate our model using transaction-level data

and reproduce the spatial distribution of liquidity and prices with high precision for every city

in our sample. Motivated by the well-established result that liquidity affects asset prices (see,

for example, Duffie, Gârleanu, and Pedersen, 2005), we then quantify the impact of spatial

liquidity differences on housing prices. In a counterfactual analysis in which we suppress

search frictions, we find that search frictions explain 19% of the spatial variation in prices and

depress prices in the outskirts relative to the city center by 7%. This illiquidity discount is in

the range of related measures for housing markets (Piazzesi, Schneider, and Stroebel, 2020) and

other highly illiquid assets (e.g. Gavazza, 2016). Overall, we show how buyers’ preferences

can simultaneously determine prices and liquidity, consistent with demand-based asset pricing

(Koijen and Yogo, 2019).
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In our empirical analysis, we combine the universe of real estate transactions from German

cities (introduced in Amaral et al., 2023) with an extensive set of real estate advertisements

assembled by a private company1 using a nearest-neighbor algorithm. We end up with geocoded

datasets on housing liquidity and prices from 2012 to 2024 for Hamburg, Munich, Cologne,

Frankfurt, and Duesseldorf. For the United States, we use ZIP-Code-level data from Redfin on

housing liquidity and prices from 2012 to 2023, combined with data on local housing charac-

teristics and demographics from the American Community Survey to obtain control variables.

With these datasets, we cover two large and fundamentally distinct housing markets: the German

housing market has a low homeownership rate and low turnover, while the U.S. housing market

has a high homeownership rate and high turnover.

Our primary measure of liquidity is the time that properties stay on the market as online

listings, the standard measure in the housing liquidity literature (Han and Strange, 2015). Our

empirical results show that other measures of liquidity display the same pattern, and our theoret-

ical results indicate that time on the market can be seen as a proxy for other liquidity measures.

We find that within-city differences in the time on the market are substantial and systematic.

Conditional on property characteristics and neighborhood characteristics, housing units stay on

the market for 15% longer in the outskirts compared to the city center in both German and U.S.

cities. This constitutes a negative liquidity gradient in urban housing markets, a novel finding

which adds to the well-documented negative price gradient (see Duranton and Puga, 2015).

We also show that the spread between asking and sales price, a measure that we construct

analogously to the bid-ask spread, becomes more negative with distance to the city center.

Furthermore, we use buyers’ contact clicks for listings as a proxy measure for market tightness

and show that it declines with distance to the city center. All of our empirical results hold in

an extensive series of robustness checks. Among these, a time series analysis shows that the

liquidity gradient flattens during the COVID-19 pandemic, but starts to recover thereafter. This

finding is in line with the flattening of the price gradient as a consequence of the shift to working

from home in this period (see Gupta et al., 2022). Lastly, using data on job accessibility across

U.S. ZIP Codes from Delventhal and Parkhomenko (2024),2 we show that our findings can be

extended to locations beyond city centers which attract a large enough number of commuters.

Building on an established housing search framework (Krainer, 2001), we model search fric-

1We are very grateful to Sebastian Hein from VALUE Marktdaten for giving us access to the data and support
throughout the process of writing the paper.

2We thank Andrii Parkhomenko for providing us access to the data.
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tions which give rise to frictional illiquidity in the housing market. We assume that households

want to minimize their distance to a central location, which gives rise to a spatial distribution

of travel costs.3 Our model thus allows us to examine the interaction of search frictions and

location preferences. We show that as the cost of travel increases with distance to the city center,

market tightness, defined as the number of potential buyers per seller, decreases, which leads

to a lower probability of sale. This is reflected in a longer time on the market outside of the

city center. Sellers act as local monopolists for differentiated goods and decrease their listing

prices as market tightness decreases with distance to the city center. Importantly, they trade

off the listing price and the time to sell a housing unit. It is hence not optimal for sellers to

adjust prices downwards such that spatial liquidity differences disappear. Hence, liquidity and

prices are endogenously co-determined by travel costs which reflect fundamental demand-side

location preferences. Moreover, this mechanism can be generalized to other locations beyond

the city center for which homebuyers share a common preference to live nearby, analogously to

our additional empirical findings.

We estimate the structural parameters of our model using our transaction-level German data

via the method of simulated moments. The only spatial input required for our model to generate

quantitatively accurate spatial liquidity and price distributions is the spatial distribution of travel

time to the city center, translated into a monetary travel cost within the model. Leveraging the

quantitative accuracy of our model, we conduct a counterfactual analysis to quantify spatial

differences in the effects of search frictions on housing prices. To do so, we compute an efficient

welfare-maximizing allocation that abstracts from search frictions. We compare the spatial

distribution of liquidity and prices from this allocation to the one from our baseline allocation

with search frictions. According to our model, frictional search results in excess illiquidity in

the outskirts relative to the city center. The frictional spatial price gradient is thus inefficiently

steep. Prices are 7% lower in the outskirts relative to the city center due to frictional illiquidity.

Furthermore, by comparing our modeled price gradients from the two scenarios with the

German price data, we find that search frictions explain 19% of the empirical price gradient. In

an extension of the model, we introduce a bargaining process which creates spreads between

asking and sales prices analogous to our additional empirical measure. We show that the time

on the market and this spread are interchangeable measures of liquidity in the model. Lastly,

in an additional model experiment, we replicate the flattening of the liquidity gradient due to

3This is in line with the canonical monocentric city model (Alonso, 1964; Muth, 1969; Mills, 1967) in which
housing prices depend on the cost of travel to the city center.
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the shift to working from home induced by the COVID-19 pandemic. Overall, our results show

how accounting for the interaction between location and search frictions significantly enhances

our understanding of the cross-sectional variation in housing liquidity and prices.

Related literature. From an empirical perspective, we are the first to establish that not only

housing prices, but also various housing liquidity measures decrease with distance to the city

center. From a theoretical perspective, we are the first to quantify location-dependent effects of

frictional illiquidity on housing prices as a function of spatial fundamentals.

Our paper adds to the growing literature on the spatial variation in housing liquidity. In

Piazzesi, Schneider, and Stroebel (2020), spatial within-city liquidity differences are driven by

the search behavior of buyer clienteles. We show how, given search behavior, location pref-

erences also generate within-city liquidity differences. Jiang, Kotova, and Zhang (2024) and

Vanhapelto (2022) focus on a more aggregate comparison and highlight differences in housing

market liquidity across regions.

We also contribute to the literature on the spatial price gradient (see, for example, Gupta

et al., 2022; Albouy, Ehrlich, and Shin, 2018) by being the first to document the spatial liquidity

gradient. Moreover, as we show in our counterfactual analysis, taking into account the spatial

liquidity gradient significantly improves our understanding of the spatial price gradient. In

addition, we provide a more general equilibrium condition than those used in the literature. In

our model, buyers have the same net utility across space in expectation, which contrasts with

standard spatial equilibrium conditions where the realized net utility of buyers equalizes across

space (see, for example, Duranton and Puga, 2015).

In our model, we endogenize the spatial distribution of search frictions and examine its

connection to housing prices, thus contributing to the literature on asset pricing models that

endogenize trading frictions (starting with Duffie, Gârleanu, and Pedersen, 2005). We show

how demand-side preferences determine both liquidity and prices. In addition, by structurally

estimating a spatial illiquidity discount for housing, we also contribute to the literature on the

pricing of liquidity in asset markets, which has traditionally been focused on bond markets and

stock markets (Amihud, Mendelson, and Pedersen, 2012). We quantify the spatial illiquidity

discount by comparing the frictional equilibrium allocation of our model to a counterfactual

efficient allocation in the spirit of Gavazza (2016).

Lastly, by integrating space into framework with trading frictions, we contribute to the

emerging literature on urban finance which combines elements of structural urban models
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with elements of structural macro-finance models (see, for example, Koijen, Shah, and Van

Nieuwerburgh, 2025; Favilukis, Mabille, and Van Nieuwerburgh, 2023; Mabille, 2023; Favilukis

and Van Nieuwerburgh, 2021).

The rest of this paper is organized as follows. Section 2 describes our data and our mea-

surement of spatial variables and liquidity. Section 3 presents our empirical analysis. Section

4 describes our model framework and presents analytical and quantitative results. Section 5

presents our counterfactual analysis. Section 6 concludes.

2 Data and measurement
To study the spatial distribution of housing liquidity and prices, we construct two new spatial

datasets for large cities in Germany and the United States. For Germany, we use property-level

data covering Hamburg, Munich, Cologne, Frankfurt, and Duesseldorf. Berlin is excluded from

our sample due to missing information on addresses. For the United States, we use ZIP-Code-

level data covering the 30 largest metropolitan statistical areas (MSAs).

2.1 Data for German cities

We combine administrative records on the universe of housing transactions in our 5 sampled

cities with a comprehensive dataset on housing advertisements. We focus our analysis on apart-

ments, which allows us to examine the role of location consistently within a city, since other

types of housing are typically scarce in German city centers.

Our transaction dataset covers the universe of residential housing transactions in large Ger-

man cities over several decades. This dataset, introduced in Amaral et al. (2023), is based on

data from local real estate committees (Gutachterausschuesse). Collecting information on all

real estate transactions from notaries, these committees register information on sales prices,

contract dates, addresses, and various property characteristics.

We obtain data on apartment advertisements via VALUE Marktdaten who scrape and process

real estate advertisements from online platforms and real estate agencies. The company’s algo-

rithm ensures that ads with both shorter and longer durations are scraped, preventing potential

bias from ad ordering influenced by users. We observe the dates on which ads were posted and

removed, addresses (if available), information on location such as ZIP Code or neighborhood,

asking prices, and various property characteristics. The dataset covers the period between 2012

and 2024, which, in combination with the longer time span covered by the transaction data,
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limits our sample to this period.

We match the two datasets using a nearest-neighbor algorithm based on location, contract

and listing dates, apartment sizes, and building year of properties. As we do not observe the

addresses of all listings, we match only about one third of the transactions with correspond-

ing listings. Our final dataset consists of more than 80 thousand observations. In Appendix

A.1, we provide further details on the matching process and show that the matched sample is

representative of the universe of transactions.

2.2 Data for U.S. cities

For the United States, we gather ZIP-Code-level data on median time on the market and

median sales prices from Redfin.4 To obtain control variables for our empirical analysis, we

gather ZIP-Code-level data on average housing size, average building year, income composition,

and racial composition from the American Community Survey as well as ZIP-Code-level data

on social mobility and neighborhood quality from Chetty et al. (2025).

We focus our analysis on single-family homes, the most common housing type in U.S. cities.

In Appendix D.3, we show that our results also hold for condominiums, multi-family houses, and

townhouses. Our dataset covers the 30 largest MSAs from 2012 to 2023 at a monthly frequency.

Appendix A.2 describes our data preparation procedure in further detail.

2.3 Measurement of spatial variables

We measure spatial variation in our data using the distance to the city center, an established

measure in the urban economics literature (see Duranton and Puga, 2015). For Germany, we

choose historic city centers for our baseline analysis.5 In a robustness check, we show that

selecting the centroid of the business district with the highest land value (via the Bodenrichtwerte

land value measurements from the Gutachterausschuesse real estate committees) yields nearly

identical city centers as the ones we choose by hand. We calculate kilometer distances between

city centers and locations of apartments transacted within the corresponding city boundaries.

For the United States, we define the center of an MSA as the location of its city hall (as done in,

4Redfin is a real estate brokerage company that obtains its data directly from local listing services, especially
those based in the largest MSAs. We do not use data from Zillow, the most popular provider of U.S. real estate
data, as Zillow does not provide access to data on time on the market at a more granular level than MSA. However,
as we show in Appendix A.2, the differences in coverage between Zillow and Redfin for the 30 largest MSAs
are very small and should not affect our results. Moreover, we show that our results are robust to using data from
Realtor.com, another online listing platform.

5Hamburg: Alsterhaus, Munich: Marienplatz, Cologne: Koelner Dom, Frankfurt: Konstablerwache, Duessel-
dorf: Marktplatz.
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for example, Gupta et al., 2022). We calculate kilometer distances between MSA centers and

ZIP Code centroids located within the corresponding MSA boundaries. In a robustness analysis,

we also create a job access index using data from Delventhal and Parkhomenko (2024) which

we use to find alternative city centers, either one or multiple per city.

As an alternative spatial measure, we use travel time estimates. The spatial structure of cities

can feature rivers or other factors that influence local transportation. Such features could be

more accurately represented via the travel time rather than the kilometer distance to the city

center. Via openrouteservice, we request the typical travel time to the city center by car, defined

analogously to the distance measures from the previous paragraph.

2.4 Measurement of liquidity

Our main measure of housing liquidity is the time on the market. For the German dataset,

we define this time as the period between the start and the end of an advertisement and report

the number of weeks an apartment has been advertised if it sells on day T , that is, T/7 weeks.

For the U.S. dataset, we directly obtain the time on the market via Redfin. This time refers to

the median number of advertised days for houses sold within a ZIP Code area in a calendar

month. Table 1 presents summary statistics for the German and U.S. datasets. In Appendix C,

we present summary statistics by city. The German market is generally less liquid than the U.S.

market, with properties typically taking almost twice as long to sell.

Table 1: Summary statistics for both datasets

Time on the market in weeks Sales price in 1000 C or $

Dataset Mean SD P25 P75 Mean SD P25 P75 N
Germany 12.47 16.36 2.30 16.20 386 302 187 490 87502
U.S. 7.60 7.87 3.50 9.64 446 502 205 530 682641

Notes: N is the number of transactions for the German dataset. For the U.S. dataset, it represents the number of
ZIP-Code-year-month pairs.

We also provide additional liquidity measures using the richer German dataset. First, we

construct a measure of the spread between the asking price and the sales price, akin to the

bid-ask spread in stock markets or bond markets. We call this measure the asking price discount.

Second, we use the number of contact clicks per ad as a proxy variable for market tightness.

This measure refers to the number of times that potential buyers directly contacted a seller who

placed an advertisement.
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3 Empirical analysis
In this section, we document new stylized facts about the spatial variation in liquidity and

prices in German and U.S. cities.

3.1 Spatial variation in liquidity and prices

Regression framework. In our baseline analysis, we use hedonic regressions. This approach

allows us to rule out that spatial liquidity or price differences are driven by systematic spatial

variation in housing characteristics or demographic differences. We estimate

yI = α ×distanceI +β ×XI + fct + εI, (1)

where for the German dataset, I indexes transactions, with every transaction I being assigned to a

calendar quarter t and a city c, while for the U.S. dataset, I = it includes an index i for ZIP Codes,

with every ZIP Code i being assigned to an MSA c, and an index t for time measured in months.

The dependent variable yI refers to time on the market or sales prices. The explanatory variable

distanceI is the distance to the city center, measured in kilometers in the baseline specification

and as the travel time to the city center (in minutes) in the alternative specification.

For regressions using the German dataset, the control vector XI includes an extensive set

of dwelling characteristics, such as size or building year, documented in Appendix A.1. For

regressions using the U.S. dataset, Xit includes average dwelling size, average building year,

median household income, the share of households with annual income above 150,000$, the

homeownership rate and the share of Black households. In addition, we control for spatial

differences in social mobility and neighborhood quality, measured by (i) the probability of

reaching the top quintile of the 2014–2015 U.S. household income distribution for individuals

born between 1978 and 1983 in a given ZIP Code area and (ii) the fraction of children born in

the same period and area who were incarcerated by April 1, 2010. The observations of the U.S.

control variables, except for the last two variables on social mobility and neighborhood quality,

are at the yearly level. A yearly observation is assigned to all months within that year.

fct captures city-time fixed effects to account for common time trends in liquidity or prices

within a city, and εI denotes the error term. To address spatial correlation in the error terms,

we cluster standard errors at the borough (Stadtbezirk) level for regressions using the German

dataset and at the ZIP-Code level for regressions using the U.S. dataset. Note that by considering

within-city variation, we rule out bias due to confounding across-city variation in unobserved
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variables.

Results. In Figure 1, we present binned scatter plots based on Regression (1).6 The left-hand

panels display a clear negative relationship between sales prices and distance to the city center.

This negative price gradient has been documented in the literature for cities in the United States

(see, for example, Harris, 2024) and across the globe (see, for example, Liotta, Viguié, and

Lepetit, 2022). The right-hand panels display a clear positive relationship between time on the

market and distance to the city center, which constitutes our novel finding of a negative liquidity

gradient. By showing the results for both German and U.S. cities, we demonstrate that these

stylized facts hold for very different housing markets and city sizes.7

Figure 1: Liquidity and price gradients for Germany (2012–2024) and the U.S. (2012–2023)
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(c) U.S. – Sales price
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(d) U.S. – Time on the market
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Notes: These binned scatter plots display the results of Regression (1) with log sales price and time on the market
as the outcome variables and 15 equally-sized distance bins. The regressions include time and location fixed effects
and control for property characteristics. The binned scatter plots are produced following Cattaneo et al. (2024).

Next, we quantify the relation between time on the market and distance to the city center

using several alternative specifications of Regression (1). Tables 2 and 3 present the results for

6For geographical maps of spatial liquidity and price distributions in cities from our German sample, see
Appendices B.2 and B.3.

7U.S. cities are typically larger and more sprawled than European cities (see, for example, Nechyba and
Walsh, 2004).
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Germany and the U.S. across model specifications, ranging from the most parsimonious model,

which only includes time fixed effects, to the most comprehensive model, which features the

full set of control variables. The coefficient on kilometer distance or travel time8 is consistently

significant at the 1% level for both German and U.S. cities across all specifications. The coeffi-

cients remain highly significant but become slightly smaller when property characteristics are

included as controls − the housing stock in city centers often exhibits features that enhance its

liquidity, such as apartments being smaller and newer.9 The results remain robust when focus-

ing solely on within-borough (Stadtbezirk) variation in German cities and when controlling for

local median household income, neighborhood quality, and demographic characteristics in U.S.

cities.

Table 2: Time on the market and distance to the city center, Germany (2012–2024)

(1) (2) (3) (4) (5) (6)
TOM TOM TOM TOM TOM TOM

Distance to center (in km) 0.31*** 0.23*** 0.17***
(0.05) (0.03) (0.05)

Travel time to center (in min) 0.13*** 0.09*** 0.06***
(0.02) (0.01) (0.02)

City × Year-quarter FE ✓ ✓ ✓ ✓ ✓ ✓

Property characteristics ✓ ✓ ✓ ✓

Borough FE ✓ ✓
N 87497 87497 87497 86162 86162 86162
Adj. R2 0.05 0.12 0.12 0.05 0.13 0.13
Mean(TOM) 12.47 12.47 12.47 12.26 12.26 12.26

Notes: This table displays the output of Regression (1) on time on the market (TOM). The first three columns show
the results for distance to the city center measured in kilometers, while the last three columns show the results
for the car travel time to the city center measured in minutes. The list of property characteristics is available
in Appendix A.1. Regressions are based on the matched sample for all cities covering the period between 2012
and 2024. Standard errors (in parentheses) are clustered at the borough (Stadtbezirk) level. ∗ : p < 0.1;∗∗ : p <
0.05;∗∗∗ : p < 0.01.

In terms of magnitude, properties in the outskirts take approximately 15% longer to sell

compared to those in the city center after taking into account spatial variation in property

characteristics, income, and demographics. The within-city spatial variation in housing liquidity

8Note that differences in average travel time speed between Germany and the U.S. lead to different relative
magnitudes of the physical and travel time coefficients.

9In Appendix B.4, we document that the most relevant of these characteristics are still substantially less relevant
determinants of housing liquidity than the distance to the city center.
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is comparable to the seasonal variation (as studied in, for example, Ngai and Tenreyro, 2014)

and the cyclical variation (as studied in, for example, Garriga and Hedlund, 2020), which we

document in Appendix B.1. For Germany, this amounts to about three weeks, while for the

United States, this amounts to about two weeks.10

Table 3: Time on the market and distance to the city center, U.S. (2012–2023)

(1) (2) (3) (4) (5) (6)
TOM TOM TOM TOM TOM TOM

Distance to center (in km) 0.04*** 0.03*** 0.04***
(0.003) (0.003) (0.004)

Travel time to center (in min) 0.04*** 0.04*** 0.05***
(0.003) (0.003) (0.004)

Median income -0.43*** -0.41*** -0.40*** -0.35***
(0.049) (0.050) (0.047) (0.050)

MSA × Year-month FE ✓ ✓ ✓ ✓ ✓ ✓

State FE ✓ ✓ ✓ ✓ ✓ ✓

Property characteristics ✓ ✓

Demographic controls ✓ ✓
N 682641 682641 682641 682641 682641 682641
ZIP codes 4955 4955 4955 4955 4955 4955
Adj. R2 0.29 0.29 0.30 0.29 0.29 0.31
Mean(TOM) 7.60 7.60 7.60 7.60 7.60 7.60

Notes: This table displays the output of Regression (1) on time on the market (TOM). The first three columns show
the results for distance to the city center measured in kilometers, while the last three columns show the results for
the car travel time to the city center measured in minutes. Regressions are based on data for single-family houses
for the 30 largest MSAs covering the period between 2012 and 2023. Standard errors (in parentheses) are clustered
at the ZIP-Code level. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.

3.2 Spatial variation in other liquidity measures

We now focus on the German data to demonstrate that other measures of housing liquidity

also decrease with distance to the city center. Figure 2 presents binned scatter plots based on

Regression (1) for the matched sample across all German cities. First, the spread between the

asking price and the sales price becomes increasingly negative with distance to the city center.

Second, market tightness, proxied by contact clicks per ad, decreases with distance to the city

10These results are based on a specification of Regression 1 in which “city center” is defined as all observations
within a 4 km radius of the city center, while “outskirts” is defined as areas beyond 13 km for German cities and
beyond 30 km for U.S. cities.
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center. Both of these effects are statistically significant, as demonstrated in Appendices B.5 and

B.6 with detailed regression results.

Figure 2: Spatial gradients of alternative liquidity measures, Germany (2012- 2024)
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Notes: These binned scatter plots visualize the results of Regression (1) with asking price discount and contact
clicks per ad as the outcome variables and 15 equally-sized distance bins. The regressions include year-quarter
and city fixed effects and control for property characteristics listed in Appendix A.1. The binned scatter plots are
produced following Cattaneo et al. (2024).

3.3 Robustness analysis

Results for individual cities. In the previous section, we presented results for pooled samples

of German and U.S. cities. Given that cities vary in size and other characteristics, it is possible

that our results are driven by a subsample of cities. As we show in Appendix D.1, this is not the

case. We find negative liquidity and price gradients for all cities in the German dataset and for

90% of the cities in the U.S. dataset. We do not explicitly analyze heterogeneity in coefficients

across cities, but as our model in the second part of the paper suggests, this heterogeneity should

be driven by the cost of travel to the city center.

COVID. The COVID-19 pandemic and the subsequent shift to remote work significantly

flattened the price gradient in the United States (Gupta et al., 2022). In contrast, the impact on

the price gradient in Europe has been comparably muted (Biljanovska and Dell’Ariccia, 2023).

We test whether remote work influenced liquidity gradients by splitting our samples into pre-

and post-2020 periods. For both Germany and the U.S., the liquidity gradient flattened during

the COVID-19 pandemic but started to recover thereafter, as documented in Appendix D.2. Our

model is able to replicate this development, which we document in Appendix H.5. The extent

to which the flattening is persistent depends on the future evolution of remote work levels and

preferences to live near city centers.
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Different housing types. In our baseline analysis, we focus on the most common housing

types in German and U.S. cities: apartments and single-family houses, respectively. In this ro-

bustness check, documented in Appendix D.3, we show that our results for German cities remain

robust across apartment size categories and our results for the United States remain robust when

considering different housing types (condominiums, multi-family homes, and townhouses).

Alternative city definitions. For U.S. cities, we test whether our results hold when using

functional urban area (FUA) boundaries from Moreno-Monroy, Schiavina, and Veneri (2021)

which define cities based on commuting flows, following the EU-OECD definition from Dijk-

stra, Poelman, and Veneri (2019). In Appendix D.4, we confirm our results for the FUAs that

correspond to the MSAs from the main analysis. This robustness analysis is not possible for

German cities, as we only have data available that refers to apartments transacted within the

administrative city boundaries.

Alternative city center definitions. In our baseline analysis, our definition of city center

is based on historic locations for German cities and city halls for U.S. cities. We conduct

a robustness analysis with alternative city centers. For Germany, we use the centroid of the

business district with the highest land value in 2023, as given by the Bodenrichtwerte land

values produced by the Gutachterausschuesse real estate committees.11 This definition follows

the concept of a central business district in the canonical monocentric city model. For the United

States, we do not have appraisal data available and therefore use the locations with the highest

volumes of residential construction as alternative city centers. We obtain these locations via the

Global Human Settlement Layers database by the European Commission Joint Research Centre.

The results, documented in Appendix D.5., show practically unchanged spatial gradients.

Non-parametric estimation. Although our main results are highly significant and robust

to different fixed effects and standard errors, we still rely on the functional form of the OLS

regression specified in Equation (1). To ensure that our results are not compromised by misspec-

ification, we employ nonparametric methods. When applying these methods, we test whether

liquidity and prices are on average lower in the outskirts than in the city center, where we match

at the level of housing units based on observable characteristics. Hence, we can only produce

these results for German cities.

First, we use augmented inverse probability weighting to estimate the average difference

11For this analysis, we are not using the data for Munich, as we do not have access to its local Bodenrichtwerte
appraisals.
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in outcome variables between city center and outskirts, while using LASSO regression in the

first stage to estimate the probability of treatment. Second, we use propensity score matching

based on our full set of apartment characteristics. Third, we use inverse probability weights

from a logistic regression to estimate average differences. The results are documented in Table

4, comparing the first 3 bins of the distance to the city center with the 13th, 14th and 15th (out

of 15) bins. All non-parametric methods confirm our baseline OLS results both in terms of

direction as well as in terms of magnitude.

Table 4: Average differences between city center and outskirts, Germany

Method Difference in TOM Difference in log prices N
OLS 1.91*** (0.218) -0.44*** (0.004) 35002
LASSO 2.02*** (0.342) -0.46*** (0.006) 35002
Propensity score 1.83*** (0.426) -0.50*** (0.012) 35002
Inverse probability 1.94*** (0.297) -0.46*** (0.006) 35002

Notes: This table shows the estimated average difference between city center and outskirts for time on the market
(TOM) and log sales prices for different non-parametric methods. The time on the market is measured in weeks.
The different methods are described in more detail in the main text. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.

Properties that do not get sold. Our baseline results could be biased if the number of ads that

did not end up in a sale varies systematically across space. To check this, we run an algorithm

to identify advertisements in the German data that did not end up in a transaction. Appendix

D.6 shows that the percentage of ads that did not result in a sale increases with distance to the

city center, as our structural model described in the second part of the paper would predict.

3.4 Discussion of external validity

Our empirical analysis shows that liquidity and prices decrease with distance to the city

center in owner-occupied residential housing markets. In this section, we examine the extent

to which these results can be generalized to other settings, considering alternative focal points

beyond the city center, and to other markets.

In our empirical analysis, we implicitly assume that the cities in our sample exhibit a mono-

centric structure. However, the mechanism we propose in the theoretical part of the paper

extends beyond the monocentric structure. In particular, our theoretical mechanism only re-

quires the existence of focal points that attract sufficiently large numbers of commuters. Here,

we test whether our empirical results hold when considering alternative focal points. Using

data on commuting distances and number of employees across ZIP Codes from Delventhal and
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Parkhomenko (2024), we construct an index of job accessibility at the ZIP-Code level as an

inverse-distance-weighted average of accessible jobs. We identify the ZIP Codes with the high-

est job accessibility within a given MSA, which we refer to as focal ZIP Codes, and calculate

the distance from each ZIP Code to the nearest focal ZIP Code. We then test whether we also

find liquidity and price gradients in this alternative setting. The results, presented in Appendix

D.7, confirm that both gradients are also present when measuring distances to nearest focal ZIP

Codes. This finding is robust to varying the number of focal ZIP Codes per MSA.

Second, we test whether our results also hold beyond the owner-occupied residential market.

If the observed liquidity and price gradients are driven by differences in local market tightness, as

suggested by our results in Section 3.2, we should expect to observe similar patterns in the rental

market. To test this, we use German rental listings data from ValueAG for the same cities and

time period as in our baseline analysis, applying the same cleaning procedures as for the sales

listings. The results, calculated using the baseline specification of Regression (1), are presented

in Table 5. We find that the time on the market for rental housing units increases with distance to

the city center, while net rents (defined as monthly rental prices excluding utilities) decrease. In

Columns 3 and 6, we show that these results also hold when relying solely on within-ZIP-Code

variation, which partially isolates confounding variation due to spatial differences in income

and demographics.

Table 5: Liquidity and price gradients in the rental market, Germany (2012–2024)

(1) (2) (3) (4) (5) (6)
TOM TOM TOM Net rent Net rent Net rent

Distance to center (in km) 0.17*** 0.17*** 0.21*** -0.02*** -0.03*** -0.02***
(0.02) (0.02) (0.08) (0.00) (0.00) (0.00)

City × Year-quarter FE ✓ ✓ ✓ ✓ ✓ ✓

Property characteristics ✓ ✓ ✓ ✓

ZIP Code FE ✓ ✓
N 957249 957249 957249 957249 957249 957249
Adj. R2 0.23 0.26 0.27 0.40 0.90 0.91
Mean dependent variable 6.72 6.72 6.72 6.52 6.52 6.52

Notes: This table displays the output of Regression (1) on time on the market (TOM) and log net rental value
(net rent). All columns show the results for distance to the city center measured in kilometers. The list of property
characteristics is available in Appendix A.1. Regressions are based on the cleaned sample of rental listings from
ValueAG for all cities covering the period between 2012 and 2024. Standard errors (in parentheses) are clustered
at the ZIP-Code (PLZ) level. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.
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4 Theoretical analysis

4.1 Structural framework

We give structure to the stylized empirical facts documented in the previous sections by

building a spatial search model of a city’s housing market. We start from a standard housing

search model (Krainer, 2001) and introduce a notion of space following the canonical mono-

centric city model (Alonso, 1964; Muth, 1969; Mills, 1967). The spatial distribution of housing

in the static monocentric city model is endogenous. Here, we take the spatial distribution of

housing as exogenously given to focus on liquidity, an inherently dynamic object.

Model environment. Time is discrete and measured in days. A large number N of infinitely-

lived agents live in a monocentric city. The agents are risk neutral, financially unconstrained and

discount with factor β ∈ (0,1). All agents travel to the city center for work and leisure activities.

The daily travel cost τ(d) depends on the distance to the city center d ∈ D = [0, d̄ ] of an

agent’s occupied housing unit, where ∂τ/∂d > 0. We abstract from other economically relevant

factors that exogenously vary across space. There are two goods in the economy, housing and

a composite consumption good which is not modeled explicitly. All costs and benefits in the

model are expressed in terms of the composite consumption good.

Housing. The housing stock is exogenously given and consists of N physically identical hous-

ing units.12 Before deciding whether to purchase a housing unit, an agent draws an idiosyncratic

valuation ε ∼U
[
ε̃ −1, ε̃

]
for this property, referred to as “dividend” in the following.13 Having

decided to purchase the property, the agent receives the corresponding dividend in every pe-

riod until they are unmatched. The dividend is independently and identically distributed across

agents, space, and time. An agent can only occupy one housing unit at a time, can only search

for new housing unit after they have been unmatched, and cannot rent out their property.

Search process. We focus on a stationary search equilibrium and omit time indices. In the

first model period, every agent is endowed with a housing unit. In every following period, a

match between an agent and a housing unit persists with probability π , which can be interpreted

12Due to limitations in data availability, we abstract from spatial differences in housing supply elasticity which
could be a complementary mechanism to explain price differences across the city.

13The uniform distribution, used in the original Krainer (2001) model, allows us to derive simple analytical
statements in Section 4.3. In our quantitative exercise, we estimate the bounds of this distribution using our
transaction-level data. To estimate as few parameters as possible and avoid overfitting the model, we scale the
uniform distribution to be of measure 1 and to be centered at ε̃ −0.5 (both of which have no inherent meaning and
are irrelevant for the model results) such that a single estimated parameter ε̃ contains all relevant information.
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as a moving shock. With probability 1−π , an agent is unmatched, puts their property up for

sale, and searches for a new one. Agents are therefore sellers and buyers simultaneously.

Then, first, sellers post prices p(d). Second, buyers randomly visit housing unit that are on

the market. When visiting a housing unit, a buyer observes their dividend draw, the property’s

distance to the city center, and the posted price. The buyer either agrees on the price and moves

in next period or does not agree on the price and continues to search. In Appendix F, we extend

the search process with a bargaining process, following Carrillo (2012).

Seller’s problem. Risk neutrality, a standard assumption in search models, allows us to ana-

lyze buyer and seller decisions separately due to additivity of agents’ value functions.14 A seller

chooses a posted price p(d) to maximize their present value

Π(d) = γ(d)p(d)+
(
1− γ(d)

)
β Π(d). (2)

With probability of sale γ(d), the seller receives p(d). With probability 1− γ(d), they try to sell

the housing unit again in the next period, obtaining a discounted continuation value β Π(d). The

probability of sale γ(d) reflects expected demand, or market tightness, given p(d). Sellers take

into account the effect of posted prices on local market tightness. They act as local price setters.

Buyer’s problem. A matched buyer, that is, a buyer who has purchased a property and is

either living in the housing unit or will move in next period, obtains value

V (d,ε) = β

(
ε − τ(d)+πV (d,ε)+

(
1−π

)(
Π(d)+W

))
, (3)

where W denotes the value of search.15 With a delay of one period, the buyer receives the

dividend ε and incurs the travel cost τ(d). With probability π , the buyer keeps on living in the

housing unit for another period and receives the discounted continuation value βV (d,ε) . With

probability 1−π , the buyer becomes unmatched and receives the discounted resale value βΠ(d)

and the discounted value of search
14Note that an agent can only occupy one housing unit at a time, but can have multiple housing units on the

market as a seller. Such a scenario occurs if an agent is unmatched, finds a new property, is unmatched again, but
has not yet sold their old property/properties. Due to the large number of agents, the probability of a single agent
accumulating all housing units is approximately zero. Note that while searching, agents do not own necessarily own
properties. For the case that that do not, we make the standard assumption that they live in rental units of absentee
landlords which are located in the city center, such that they do not incur travel costs. Renting out unmatched
properties is not possible.

15The linear specification for buyer values is standard in housing search models, analogously to linear specifica-
tions of worker values in labor market search models (see, for example, Rogerson, Shimer, and Wright, 2005).
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βW = βEd,ε
[

max
[
V (d,ε)− p(d),βW

]]
, (4)

where a buyer either accepts a posted price and receives a net discounted value of β (V (d,ε)−

p(d)), or continues to search and receives β 2W .16

4.2 Equilibrium

Seller’s optimization. The first-order condition for profit maximization is

p(d) = β Π(d)− γ(d)
∂γ/∂ p(d)|d

, (5)

where the derivative ∂γ/∂ p(d)|d is evaluated at the equilibrium sales price given a distance to

the city center d. We show in Appendix E that this condition provides a maximum.

Buyer’s optimization. Via the definition of the value of search (4), a buyer has to be indifferent

between buying a property and continuing to search at some reservation dividend ε∗(d):

V (d,ε∗(d))− p(d) = βW. (6)

The solution of this equation for a given distance to the city center characterizes the corre-

sponding reservation dividend. Note that the optimality condition (6) defines a cutoff rule for

a stochastic event. Individual buyers can draw higher reservation values than ε∗(d), in which

case they accept the equilbrium price p(d) and obtain a net utility above βW . The average

idiosyncratic dividend at distance to the city center d is (ε∗(d)+ ε̃)/2. Note that precisely be-

cause equilibrium expected net buyer utility is constant, where “expected” refers to locations

and dividend draws, required dividend draws have to offset travel costs.

Notion of spatial equilibrium. The buyers’ optimality condition (6) implies reservation divi-

dends with which buyers are indifferent between purchases at all distances to the city center, as

the discounted value of search βW does not vary across space. The buyer indifference condition

is hence also a spatial equilibrium condition. Morover, this spatial equilibrium condition is also

to be interpreted as a spatial no-arbitrage condition for housing (see, for example, Glaeser and

Gyourko, 2008), such that there is no arbitrage opportunity for buyers across space.

16To calculate the expectation over distances, we assume that it is formed using the whole set of distances D ,
even if only a subset of distances is covered by the market in a given period. In other words, we assume that buyers
act as if housing units at all distances to the city center will be available on the market in the next period. This
modeling choice is a consequence of disregarding dynamics and focusing on a stationary equilibrium. With a large
number of properties, this holds approximately true in every period.
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Probability of sale. The equilibrium probability of sale at some distance to the city center

is equal to the probability that a buyer’s idiosyncratic dividend draw is above the reservation

dividend at this distance:

γ(d) = Prob(ε > ε
∗(d)) = ε̃ − ε

∗(d). (7)

Thus, for the derivative in the seller’s optimality condition (5) we have that

∂γ

∂ p(d)|d
=− ∂ε∗

∂ p(d)|d
. (8)

To characterize this derivative, we rearrange the buyer’s value (3) and obtain a linear expression

V (d,ε) =
β

1−πβ

(
ε − τ(d)+

(
1−π

)(
Π(d)+W

))
. (9)

Using the indifference condition (6), we isolate the reservation dividend:

ε
∗(d) =

1−πβ

β
p(d)+ τ(d)−

(
1−π

)
Π(d)+

(
π −πβ

)
W. (10)

Hence, the derivative in the first-order condition of the seller is

∂γ

∂ p(d)|d
=−1−πβ

β
, (11)

where ∂Π/∂ p(d)|d = 0 due to the Envelope Theorem. Now, we have all required information

to define an equilibrium of the model. In Appendix G, we provide proofs of the equilibrium’s

existence and uniqueness.

Equilibrium definition. A stationary spatial search equilibrium consists of value functions

{V,Π}, a value of search W , a posting price function p, a reservation dividend function ε∗, and

a sale probability function γ that satisfy equations (2), (4), (5), (6), (7) for all distances to the

city center d ∈ D , given parameters {β ,π, ε̃ } and a travel cost function τ .

4.3 Analytical results

Before calibrating and estimating the model’s structural parameters, we first derive analytical

results that rationalize our findings from the empirical part of the paper as general properties of

our model. We show that the equilibrium expected time on the market increases with distance

to the city center while the equilibrium sales price decreases with distance to the city center.

The underlying economic factor behind these results is the cost of travel to the city center. In

Appendix F, we show that the expected time on the market is interchangeable with the asking
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price discount as an alternative concept of liquidity within the extended version of our model.

4.3.1 Reservation dividends across space

First, as an auxiliary result, we show that buyer reservation dividends ε∗(d) increase with

distance to the city center. Buyers need higher draws of the dividend to make a purchase the

farther a housing unit they visit is away from the city center, which reflects a higher travel cost

τ(d). To show that ∂ε∗/∂d > 0, we reformulate p(d) and Π(d) in terms of ε∗(d). Combining

the expression for the expected profit (2) and the seller optimality condition (5), we obtain

p(d) =−
(
1−β

)
γ(d)+β

(
γ(d)

)2(
1−β

)(
∂γ(d)/∂ p(d)|d

) . (12)

With equilibrium relations (7) and (11) between probabilities of sale and reservation dividends,

p(d) =
β

1−πβ

(
ε̃ − ε

∗(d)
)
+

β 2(
1−β

)(
1−πβ

)(ε̃ − ε
∗(d)

)2 (13)

and, via the seller optimality condition (5),

Π(d) =
β(

1−πβ
)(

1−β
)(ε̃ − ε

∗(d)
)2
. (14)

Plugging these results into the expression for the reservation dividend (10) and differentiating

with respect to the distance to the city center, we get:

∂ε∗

∂d

(
2−2

πβ

1−πβ

(
ε̃ − ε

∗(d)
))

︸ ︷︷ ︸
>0

=
∂τ

∂d
> 0, (15)

and hence, ∂ε∗/∂d > 0.17

4.3.2 Liquidity and prices across space

Liquidity. In line with the measurement of time on the market in the empirical part of the

paper, we define that a property has been on the market for T days if it sells on day number T

of being advertised. Via the expected value of the geometric distribution that results from the

multiplication of sale probabilities over time, the expected time on the market in days at a given

distance to the city center is

E
[
TOM(d)

]
=

1
γ(d)

=
1

ε̃ − ε∗(d)
, (16)

17This should hold for any well-behaved dividend distribution and value function. The uniform dividend distri-
bution and linear value function allow us to obtain straightforward analytical expressions.
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again using the equilibrium relation (7) between probabilities of sale and reservation dividends.

Therefore,

∂E
[
TOM

]
∂d

=
∂ε∗

∂d

(
ε̃ − ε

∗(d)
)−2︸ ︷︷ ︸

>0

> 0. (17)

Intuition. Reservation dividends increase with distance to the city center, which reflects com-

pensation for a higher cost of travel to the city center. With a higher cutoff value for dividend

draws, the probability of sale decreases with distance to the city center, that is, the market thins

out. A lower probability of sale implies a higher expected time on the market.

Prices. Via auxiliary expression (13),

∂ p
∂d

=−∂ε∗

∂d

(
β

1−πβ
+

2β 2(ε̃ − ε∗(d)
)(

1−β
)(

1−πβ
))︸ ︷︷ ︸

>0

< 0. (18)

Intuition. Sellers expect to sell housing units with a higher probability inside the city center,

as reservation dividends are lower. Being local price setters, they optimally post higher prices,

since they know that they are more likely to meet a searcher that is willing to buy. They set

distortedly high prices in the tighter local market near the city center relative to the outskirts. As

in the standard monocentric city model, the underlying factor for equilibrium prices to decrease

with distance to the city center is the cost of travel to the city center. In Appendix H.1, we show

that the model furthermore predicts the price gradient to be steeper than the liquidity gradient

due to the dynamic nature of the seller’s problem and confirm this result empirically.

Further remarks. First, our choice of building on the standard monocentric city model results

from considerations of simplicity. Our mechanism does not require a single city center, or any

city center whatsoever to function. Our additional empirical analysis with focal ZIP Codes across

the United States further illustrates this statement empirically. Whenever there is a location for

which homebuyers share a common preference to live nearby, generating spatial patterns in

market tightness, our mechanism applies. City centers provide established examples for such

focal points, and as such a special case of our mechanism.

Next, note that in practice, the cost of travel to the city center may sometimes not increase

with distance to the city center due to, for example, rivers or other factors that influence local

transportation. In such a case, we would not expect liquidity and prices to decrease with distance

to the city center.
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Moreover, note that we assume all agents to be identical. In principle, different buyer clien-

teles in the city center and the outskirts could also generate spatial variation in liquidity and

prices. However, within-city housing market search tends to be integrated via “broad searchers”

(Piazzesi, Schneider, and Stroebel, 2020) who search across many locations, hence we are not

particularly concerned about this aspect. Moreover, in our empirical analysis, we condition on

apartment size and on borough fixed effects for German cities, both of which should capture

some dimension of buyer heterogeneity. For U.S. cities, we control for ZIP-Code-level demo-

graphic characteristics. It is therefore consistent with the empirical part of the paper to abstract

from household heterogeneity in the model.

Furthermore, we assume that buyers randomly visit housing units and observe their idiosyn-

cratic dividends during these visits. If buyers, irrespective of clientele, are more inclined to visit

properties in the city center, this might also influence the time on the market. The result on

“broad searchers” partly counteracts also this concern. Moreover, in Carrillo (2012), searchers

observe part of their dividends before visiting properties, which, however, is estimated to play a

quantitatively negligible role for housing purchase decisions. Even if we take into account that

online services are more developed today, this aspect cannot be quantitatively relevant in our

framework in light of this result.

Lastly, by assuming risk neutrality of agents, we can separate buyer and seller decisions. If

we were to introduce risk aversion, agents’ idiosyncratic housing valuations could matter for

their motivation to sell. Idiosyncratically higher-valued properties located in the outskirts could

then be kept longer on the market. For this argument to matter, our mechanism has to be present

in the first place, unless there is another economic fundamental that can convincingly generate

the same spatial variation in reservation dividends quantitatively.

4.4 Model solution method

We evaluate the quantitative performance of our model by estimating it using our German

transaction-level data. We are not able to solve the model in closed form, as we obtain a nonlinear

system of equations via the equilibrium conditions. Hence, we solve the model numerically. We

discretize the set of distances to the city center: D∆ = {d∆
1 , . . . ,d

∆
z }. The equilibrium condition

(4), which describes the value of search as an expectation over distances to the city center and

idiosyncratic dividends, and the equilibrium conditions (2), (5), (6), and (7), which have to hold

for all distances to the city center d∆ ∈ D∆, constitute the relevant system of equations. Solving
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the model is not trivial due to its high dimensionality,

Algorithm 1 Solution algorithm: stationary spatial search equilibrium
Initialize an iteration tolerance η .
Initialize a guess for the value of search W .
Initialize an auxiliary W̃ with |W −W̃ |> η .
while |W −W̃ |> η do

Set the guess W equal to W̃ .
for d∆ ∈ D∆ do

Solve equations (2), (5), (6), and (7), given W .
end for
Update W̃ .

end while

Solution algorithm. Algorithm 1 solves for the unique stationary spatial equilibrium. It starts

from a guess for the value of search W and updates the guess via

W̃ =
1
z ∑

d∆∈D∆

γ(d∆)
(

V
(
d∆, ε∗(d∆)+ε̃

2

)
− p(d∆)

)
+
(
1− γ(d∆)

)(
βW
)
, (19)

where a buyer purchases a housing unit at d∆ with probability of sale γ (d∆) and continues to

search with probability 1− γ (d∆), following the alternative definition of the value of search

in Krainer and LeRoy (2002). We obtain our first guess for the value of search by solving the

model without space and using the value of search from that solution. The algorithm stops when

the guess W is equal to the resulting W̃ , with tolerance η .

4.5 Calibration and estimation of model parameters

To obtain the discretized distance distribution D∆, we group the distances to the city center

from the pooled German dataset net of year-quarter fixed effects, city fixed effects, and apartment

characteristics controls into z = 15 bins with equal numbers of observations. We obtain the

corresponding travel time estimates as explained in Section 2.3 and convert them into travel cost

estimates, assuming that τ(d∆) = µ × τ̃(d∆), where τ̃(d∆) is the travel time to the city center

by car in minutes. This conversion of travel time into travel cost follows established approaches

(see, for example, Ahlfeldt et al., 2015). The scaling parameter µ measures the cost in model

units of traveling 2 minutes by car, as agents commute back and forth between their property

and the city center every day.

Calibrated parameters. We set β = 365
√

0.95 ≈ 0.9999 such that the annual discount factor

is 0.95. The housing match persistence is given by π = 1− 1
30×120 ≈ 0.9997, as the average
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holding period in the data is 120 months. This value is based on observations from January

1990 to 2024 to capture the full length of holding periods as well as possible. For Hamburg, we

do not have data on holding periods available, thus the calibrated housing match persistence is

based on information from Munich, Cologne, Frankfurt, and Duesseldorf.

Table 6: Estimated parameters, all German cities pooled

Parameter Description Value Bootstr. 95% CI Target statistic Target (model) value
µ Travel time scaling 0.0051 [0.0050,0.0052] Avg. car oper. cost 14.17 (14.17)e
ε̃ Dividend dist. bound 0.56 [0.55,0.57] Avg. time on mkt. 12.47 (12.46) wk

Estimated parameters. We estimate µ and ε̃ with the method of simulated moments, match-

ing 2 moments with 2 parameters as displayed in Table 6. With the travel cost scaling parameter

µ , we target an average daily car operating cost in Germany of 14.17e (Andor et al., 2020).18

We convert between model units and euros via the average apartment sales price, consistent

with both the travel cost and the average apartment sales price being expressed in units of the

background consumption good. We follow the canonical monocentric city model and calibrate

the travel cost as a physical cost of travel, but also provide an alternative calibration in Appendix

H.3 in which we think of the travel cost as an opportunity cost due to lost time by traveling to

the city center. With the idiosyncratic dividend distribution bound parameter ε̃ , we target the

average time on the market. A higher value of ε̃ mechanically increases idiosyncratic dividend

draws and thus shortens the average time on the market. We obtain 95% confidence intervals

by drawing 1,000 bootstrapped replications of data inputs sized 1/3 of the entire sample with

replacement, estimating the model for each draw, and using the 0.025 quantiles and 0.975 quan-

tiles of the resulting parameter distributions as confidence bounds (as done in, for example,

Gavazza, 2016).

4.6 Model results

Even though we do not target the spatial gradients of time on the market and sales prices,

our results exhibit spatial variation that closely aligns with the data, as displayed in Figure 3.

The model requires the spatial distribution of the car travel time to the city center as the only

spatial input and, using additional city-wide average values, produces accurate spatial liquidity
18See supplementary information, Table 3. Most of the average car operating cost consists of fuel costs, depre-

ciation costs, and repair costs which we find plausible to be linear in car travel time. Since empirically we find
that public transport travel times are approximately interchangeable with car travel times, we do not repeat this
robustness analysis here for the model.
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and price distributions.19 As such, we argue for the cost of travel to the city center to be a

quantitatively strong fundamental that generates within-city spatial variation in both housing

liquidity and housing prices. Appendix H.2 provides the spatial distributions of additional

variables and Appendix H.4 provides results for individual German cities. Our results hold for

every city.

Figure 3: Model results: spatial distributions of liquidity and prices, all German cities pooled

Notes: “TOM” refers to the (expected) time on the market. The data points are calculated using Regression (1)
with year-quarter fixed effects, city fixed effects, and property characteristics controls.

5 Housing liquidity and spatial asset pricing
In this section, we quantify how spatial liquidity differences matter for housing prices. Both

the fundamental value and the liquidity component of housing prices depend on location, which

makes it challenging to disentangle these two variables empirically.20 Following Krainer and

LeRoy (2002), we calculate a counterfactual efficient allocation in our model. We measure

how much prices change across space if we remove frictional illiquidity by comparing the

frictional baseline allocation to the counterfactual efficient allocation. The efficient allocation

is characterized by welfare-maximizing reservation dividends which translate into welfare-

maximizing liquidity and prices. Intuitively, an efficient allocation in our model could be best

thought of as an allocation in a market with a very large seller side. Buyers in such a market

19Nevertheless, the model fails to capture the steep price gradient near the city center. This leaves explana-
tory room for factors other than the cost of travel to the city center to systematically drive the within-city
variation in apartment prices. Possible factors are, for example, a particularly inelastic housing supply (Baum-
Snow and Han, 2024) or a particularly high concentration of residential amenities (Garcia-López and Viladecans-
Marsal, 2024) near city centers. Without further analysis, which goes beyond the scope of this paper, we cannot
shed light on this issue.

20Approaching such issues with other asset classes is more straightforward empirically if the assets’ cash flow
and maturity are directly observable. In housing markets, the cash flow is a latent variable.
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have many outside options, which eliminates the price-setting power of sellers.21

Figure 4: Spatial distributions under frictional and efficient search, all German cities pooled

(a) Sales price (b) Time on the market

Notes: These figures show the equilibrium expected time on the market (TOM) and sales price by distance to the
city center sfrom our main model (“frictional search”) and the the efficient allocation (“efficient search”).

Efficient allocation. Assuming a steady state over all model periods, we choose reservation

dividends εeff(d∆) to maximize welfare

W=
∞

∑
t=0

β
t

(
1
z ∑

d∆∈D∆

(
m(d∆)

(
Eε

[
ε̄(d∆)

]
− τ̄(d∆)

)))
, (20)

where m(d∆) denotes the probability of being matched and bars denote averages at given dis-

tances to the city center. Agents at distance d∆ have an average dividend of (εeff(d∆)+ ε̃)/2.

All agents at distance d∆ pay the travel cost τ(d∆). As there are no further constraints, we can

equivalently maximize

W̃(d∆) = m(d∆)

(
εeff(d∆)+ ε̃

2
− τ(d∆)

)
(21)

for every distance d∆ ∈ D∆. Agents transition from being unmatched to being matched with

probability ε̃ −εeff(d∆) and keep a housing unit with probability π . The steady-state probability

of being matched is therefore m(d∆) = πm(d∆)+π(ε̃ − εeff(d∆))(1−m(d∆)), and hence,

m(d∆) =
π
(
ε̃ − εeff(d∆)

)
1−π +π

(
ε̃ − εeff(d∆)

) . (22)

We then calculate the efficient reservation dividend for a given d∆ numerically via

21Note that even in the efficient allocation, illliquidity still exists, that is, there is an optimal level of illiquidity
larger than zero. This is comparable to the concept of a natural unemployment rate.
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argmax
εeff(d∆)

(
π
(
ε̃ − εeff(d∆)

)
1−π +π

(
ε̃ − εeff(d∆)

))(εeff(d∆)+ ε̃

2
− τ(d∆)

)
. (23)

In Figure 4, we plot the expected sales prices and time on the market by distance to the

city center for the frictional and the efficient allocation, focusing on spatial differences by

normalizing with respect to the values at d∆
1 .22 Search decreases relatively more in the outskirts

than in the city center, which leads to a flattened liquidity gradient. We quantify how this

flattening transmits to the spatial price gradient, which flattens as well.

Figure 5: Spatial illiquidity discount, all German cities pooled

Notes: This figure shows the price discount due to inefficient illiquidity relative to the city center as defined in (24).
The dots display illiquidity discount estimates from the 1,000 bootstrapped replication draws.

Spatial illiquidity discount. We calculate a price discount due to frictional illiquidity at a

distance to the city center d∆ by comparing relative prices peff(d∆)/peff(d∆
1 ) from the efficient

allocation to relative prices p(d∆)/p(d∆
1 ) from the frictional allocation:

Ψ(d∆) =
peff(d∆)

peff(d∆
1 )

− p(d∆)

p(d∆
1 )

, (24)

where Ψ(d∆
1 ) = 0 by definition. The illiquidity discount measures the difference between the

two spatial price curves in Figure 4(b) by distance to the city center. Figure 5 displays our

illiquidity discount measurements. The model implies an illiquidity discount of around 7%

in the outskirts. This price distortion due to frictional illiquidity falls into a range of related

measures. First, it resembles the magnitude of real estate commission fees at 5% to 6% in the

United States (Han and Strange, 2015). Such fees are market outcomes which, similarly to

our illiquidity discount, quantify valuations for easing matching frictions between real estate

22For a discussion of level effects in a non-spatial setting, see Krainer and LeRoy (2002).
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buyers and sellers. In Germany, real estate commission fees are similar to those in the United

States, however, less plausibly market outcomes (Stoll, 2023). Second, Piazzesi, Schneider,

and Stroebel (2020) quantifies price discounts due to search frictions in the housing market as

ranging up to 6%.

Figure 6: Illiquidity discount at 10km distance to the city center, all German cities pooled

(a) By β yr, with π yr = 0.90 (b) By π yr, with β yr = 0.95

Notes: These figures show the illiquidity discount, as defined in (24), at 10km distance to the city center for different
yearly discount factors and housing match persistence probabilities.

Moreover, using the spatial price curves with and without search frictions and the spatial

price data, we compare to what extent search frictions explain the empirical spatial price gradient.

We regress log sales prices from the two model versions and the data on the distance to the

city center, as we do in the empirical part of the paper. Then, we calculate the difference in the

regression coefficients with and without search frictions and set this difference in relation to

the data coefficient. The resulting fraction quantifies the share of the empirical price gradient

explained by frictional illiquidity according to our model. We find that frictional illiquidity

explains 19% of the empirical spatial price gradient.

Sensitivity analysis. In the calibration, we set the yearly discount factor to 0.95, a standard

choice. Nevertheless, we check if our illiquidity discount estimates are sensitive to our choice

of the discount factor. Moreover, we cannot calculate holding periods for apartments that were

transacted before the beginning of our sample in January 1990. We also check if our illiquidity

discount estimates change if we use different housing match persistence probabilities. In Figure

6, we plot the illiquidity discount at 10km distance to the city center, varying the yearly discount

factor β yr between 0.935 and 0.965 and the yearly housing match persistence π yr between 0.88

and 0.92. Each bar represents a recalibration of the model. Our illiquidity discount estimates

are robust to changes in both parameters.
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6 Conclusion
In this paper, we demonstrate that housing market liquidity decreases with distance to the

city center, using novel spatial datasets for Germany and the United States. We rationalize our

findings by building a spatial search model of a housing market in a monocentric city. We show

analytically that as a result of an increasing cost of travel to the city center, liquidity and sales

prices decrease with distance to the city center. Using our model, we structurally estimate a

substantial price discount due to frictional illiquidity in the outskirts relative to the city center.

We conclude that within-city spatial housing liquidity differences play an important role in

the pricing of housing assets. Our findings can also inform research on other asset classes,

especially if they have characteristics that are valued idiosyncratically. In particular, with a

recent “great rotation” (Koijen, Shah, and Van Nieuwerburgh, 2025) towards infrequently traded

and heterogeneous private and real assets, our results can help future research in determining

systematic variation in the pricing of such assets.
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Appendix

A Data sources and cleaning procedures
In this section, we present in detail the steps that we took to prepare the data for the empirical

analysis of the German and the U.S. data.

A.1 Germany

Matching algorithm. We start the algorithm by matching each transaction to potential ads

based on location. This gives us a pool of potential matching ads for each transaction. We then

follow a series of steps to eliminate those ads that are unrealistic matches. First, we exclude

advertisements that were published after the contract date and ads that were removed more

than one year before the contract date. The algorithm proceeds by matching observations with

complete addresses, that is, addresses which include street names and house numbers. However,

for apartments, having information on solely the street name and the house number is insufficient

for a successful match, as there may be multiple apartment transactions related to the same

building. If that is the case, the algorithm excludes ads based on property characteristics in the

following order:

1. The living area differs by more than 10%.

2. The floor number differs by more than 2.

3. The building year differs by more than 5 years.

We choose these property characteristics since they have the lowest number of missing

values from the set of variables that are covered by both datasets and select numeric values for

the criteria that give us reasonable buffers for measurement errors due to incorrect user inputs.

If, after this process, we still have more than one potential listing for a particular transaction,

we continue to eliminate listings in the following sequential steps until we have only one listing

for a particular transaction.

1. We keep the ad(s) that minimize(s) the distance to the transaction in terms of living area.

2. We keep the ad(s) that minimize(s) the distance in terms of floor number

3. We keep the ad(s) that minimize(s) the spread between the listing price and the sales price.

1



4. We eliminate listings that were taken out more than three months prior to the actual

transaction.

If we still have multiple matches after these steps, we drop them because we have no way of

identifying the correct match.

Next, we check if we have assigned an ad to multiple transactions. If this is the case, we

keep only the most likely match following the steps described above. When we match based on

the building’s exact address, we do not exclude matches with different building years. Matching

by address is sufficient to identify a building, and typically the building year is the same for all

flats within a building. When this is not the case, we attribute the different building years to mea-

surement error, that is, incorrect user-specified information on the advertisement websites. We

match the transactions which do not have entries with complete addresses via the same process

as for those with complete addresses, but condition sequentially on the following geographical

objects: street name, ZIP Code, and neighborhood (Stadtteil), until we have a unique match. If

there is no unique match, we drop the observation.

On average, we match about 30% of the transactions across cities. The relatively low pro-

portion of transactions that are matched is largely due to overmatching, that is, the fact that in

many cases we end up with more than one potential advertisement for a given transaction after

the algorithm has applied all criteria. In Table 7, we provide further information on the matched

observations by city.

Table 7: Summary statistics: matched dataset

City # Transactions # Ads # Matched Avg. sales price (C) Avg. asking price (C)
Hamburg 78845 70692 20303 392181 389802
Munich 56301 110207 26424 495367 493899
Cologne 35599 43034 14957 241388 257731
Frankfurt 34984 36015 15428 384459 446754
Duesseldorf 35578 32121 10390 305374 318527

Notes: This table reports summary statistics about the matched transaction and advertisement data for the period
2012- 2024.

We show that the matched sample is not biased along several important characteristics of

the transacted properties in Figure 7. We plot the distributions from the matched sample and

the universe of transactions, with all cities pooled together, of the variables living area, building

year, distance to the city center, and sales price. For each of these variables, the two distributions

mostly overlap, which indicates that the matched sample is representative of the universe of

transactions.
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Figure 7: Matched sample and universe of transactions, all German cities pooled
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Notes: These figures show histograms of different variables in the matched sample and the universe of transactions.
The y-axis measures the frequency in percent of a given value on the x-axis in the respective sample.

Data preparation. We transform several variables to prepare them for regression analysis. We

control for the following variables: living area in m2, living area squared, number of rooms, year

of construction, “Altbau” or not, “Neubau” or not, physical condition of the building, whether

the apartment is in the upper floor of the house or not, whether the apartment is rented out or not,

type of heating, source of heating, whether the apartment has a fitted kitchen or not, whether

the apartment has an open kitchen or not, whether the bathroom has a shower, whether the

bathroom has a bathtub, whether the apartment has a terrace or balcony, whether the apartment

has a basement, whether the apartment has a garden, and the number of parking spaces.

We control for the age of the properties by creating a categorical variable that divides

the observations into different construction periods. We follow the commonly used categories

introduced by the official German appraisers. In particular, we construct the following categories:

pre-1950, 1950-1977, 1978–1990, 1990-2005, and post-2005. We use a categorical variable

rather than a continuous variable for the building year of the property because the relationship

between age and price and liquidity is highly non-linear in the case of the German housing

market, as shown in Amaral et al. (2023). In addition, we also include a category for properties
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that are being occupied for the first time and another category that identifies properties where

construction is not yet complete. We divide the heating type of each home into four different

categories. We define “brown” dwellings as those that consume energy produced by oil, coal, or

use space heating and tile stove heating. We define “standard” dwellings as those that consume

energy produced by gas and use central heating. We define “green” properties as those where

the energy comes from solar, heat pump or pellets, or use district heating or CHP. We also use

an “other” category, taken directly from the dataset, which includes other energy sources. We

use a categorical variable to consider the quality of the furnishings and interiors of the property

and a categorical variable to categorize the quality of the construction of the building, both of

which are provided directly in the dataset. We create a categorical variable to control for the

number of rooms in the property. The variable has four categories: 1 room, 2 rooms, 3 rooms,

and 4 or more rooms. We also control for the number of floors on which the apartment is located

and the total number of floors in the building where the apartment is located.

A.2 United States

Redfin is both a real estate brokerage and an online platform. Redfin typically has direct

access to data from local multiple listing services (MLS) and adds those listings to the platform.

However, unlike Zillow, Redfin has a low coverage of for-sale-by-owner (FSBO) listings because

Redfin does not allow sellers to post listings themselves. Since FSBOs account for only about

6% of all home sales in the U.S. (see: National Association of Realtors), by including the

majority of MLS listings, Redfin covers most of the market. We clean the data by dropping all

ZIP Codes for which the time on the market estimates are, on average, based on less than 10

observations and there is one month with less than 5 observations.

For a robustness analysis, we collect data on time on the market from another online platform,

Realtor.com, which covers most local MLS in the United States, and compare these results to

our baseline results. We estimate the time on the market gradient using both datasets. Because

the Realtor.com platform only provides data for an “all residential” category, we cannot perform

the comparison for different segments separately. Moreover, the dataset from Realtor.com only

starts in 2016, so we limit our analysis to the period between 2016 and 2023. In Table 8, we

provide outputs for regressions of time on the market on distance to the city center using both

the Redfin and Realtor.com data, with very similar results.
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Table 8: Time on the market and distance to the city center in the U.S. (2016–2023)

(1) (2) (3) (4)
Redfin Realtor.com Redfin Realtor.com

Distance to center (in km) 0.01∗∗∗ 0.02∗∗∗ 0.03∗∗∗ 0.04∗∗∗

(0.002) (0.001) (0.003) (0.002)

Median income -0.09 -0.39∗∗∗

(0.067) (0.043)

MSA × Year-Month FE ✓ ✓ ✓ ✓

Property characteristics ✓ ✓
N 290703 290703 290703 290703
ZIP Codes 3727 3727 3727 3727
Adj. R2 0.50 0.42 0.56 0.48
Mean(TOM) 6.04 6.96 6.04 6.96

Notes: This table shows results for regressions of time on the market on the distance to the city center as specified
in Regression (1). Time on the market is measured in weeks. Standard errors (in parentheses) are clustered at the
ZIP-Code level. Median income and property characteristics are control variables. The underlying data bundles
all residential housing types into one category. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.

For the control variables on social mobility and neighborhood quality, we employ data from

the Chetty et al. (2025) “Opportunity Atlas” (link). We calculate ZIP-Code-level averages of the

Census-tract-level probability of reaching the top quintile of the 2014-2015 U.S. household in-

come distribution when born between 1978 and 1983 (variable: kfr_top20_pooled_pooled_mean)

and the fraction of children born between 1978 and 1983 who were incarcerated on April 1st,

2010 (variable: jail_pooled_pooled_mean). The primary data sources are the 2000 and 2010

Censuses, federal income tax returns from 1989, 1994, 1995, and 1998-2015, and the 2005–2015

American Community Surveys.

5
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B Additional empirical results

B.1 Time series of housing liquidity and prices in the U.S.

Figure 8: Variation of U.S. housing market variables around long-run trends

Notes: These figures display Redfin time series of U.S.-level quarterly median sales prices and time on the market
(TOM), decomposed via a Hodrick–Prescott filter with standard penalty parameter λ = 1600. The cyclical variation
is obtained by isolating the cyclical component of a seasonally adjusted (provided by Redfin via X-13ARIMA-
SEATS) time series from the Hodrick–Prescott filter. The seasonal variation is obtained by isolating the cyclical
component of the unadjusted time series from the Hodrick–Prescott filter and subtracting the cyclical time series.

6



B.2 Spatial distribution of time on the market in German cities

Figure 9: Time on the market across space (German cities, 2012- 2024)

Notes: These maps display the spatial distributions of time on the market (TOM) by city from our matched German
dataset, averaged within rings around city centers.
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B.3 Spatial distribution of sales prices in German cities

Figure 10: Sales prices across space (2012- 2024)

Notes: These maps display the spatial distributions of sales prices by city from our matched German dataset,
averaged within rings around city centers.

8



Table 9: Log sales prices and distance to the city center, Germany (2012–2024)

(1) (2) (3) (4) (5) (6)
Price Price Price Price Price Price

Distance to center (in km) -0.04∗∗∗ -0.05∗∗∗ -0.04∗∗∗

(0.01) (0.00) (0.01)

Travel time to center (in min) -0.02∗∗∗ -0.02∗∗∗ -0.02∗∗∗

(0.00) (0.00) (0.00)

City × Year-quarter FE ✓ ✓ ✓ ✓ ✓ ✓

Property characteristics ✓ ✓ ✓ ✓

Borough FE ✓ ✓
N 87499 87499 87499 86165 86165 86165
Adj. R2 0.28 0.85 0.86 0.28 0.84 0.86
Mean(log(price)) 12.62 12.62 12.62 12.61 12.61 12.61

Notes: This table shows results for regressions of the log sales price on the distance to the city center as specified
in the regression specification (1). “Price” refers to the sales price in log euros. Standard errors (in parentheses)
are clustered at the borough ("Stadtbezirk") level. The property characteristics are control variables. See Appendix
A.1 for a full list of these characteristics. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.

B.4 Additional determinants of housing liquidity in German cities

In our main analysis, we focus on how liquidity affects prices via location. Nevertheless,

houses differ in other dimensions which might also impact their liquidity. In particular, the size

and age of properties might be strong determinants of liquidity, as typically the market is also

segmented along these dimensions. Although our focus in this paper is not on these additional

dimensions, we also provide evidence that location has a stronger effect on liquidity than these

other factors. In Figure 11, we plot the standardized coefficients for size as measured by living

area in square meters, age of the building, and distance to the city center. The coefficients are

derived from Regression 1. All coefficients are positive and significant, suggesting that these

dimensions have a significant impact on liquidity as measured by time on the market. As is also

evident from the graph, the distance to the city center has the largest impact on liquidity.

B.5 Asking price discount in German cities

In Figure 12, we plot a histogram of the asking price discount for our matched German

sample by city. The majority of transactions exhibit a negative discount, that is, properties

typically sell below their asking prices. The distribution resembles a normal distribution but

has a more positive skew and thinner tails. On average, a property is transacted at a sales price

9



Figure 11: Determinants of time on the market, (2012- 2024)

Cologne

Hamburg

0 .03 .06 .09
Effect on Time on the Market

Living area
Building age
Distance to city center

Notes: This figure shows the OLS regression coefficients by city, as well as its respective 99% confidence intervals.
See Appendix A.1 for a full list of these characteristics. Distance to the city center is measured as the kilometer
distance. The coefficients are standardized across the displayed determinants using the respective sample standard
deviation.

below its asking price. There is a clear bunching at an asking price discount of 0%. This finding

has been documented for other countries and reflects that the asking price is a relevant anchor

for the bargaining process in housing markets, as it is a partial commitment for the seller (Han

and Strange, 2016). In Table 10, we present results for regressions of asking price discount

on distance to the city center. For all specifications, there is a negative and highly significant

coefficient on the distance to the city center.
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Figure 12: Histograms of asking price discount (2012- 2024)
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Notes: These figures show histograms for the asking price discount in our matched data set.

Table 10: Asking price discount and distance to the city center, Germany (2012 – 2024)

(1) (2) (3) (4) (5) (6)
APD APD APD APD APD APD

Distance to center (in km) -0.43∗∗∗ -0.45∗∗∗ -0.37∗∗

(0.09) (0.09) (0.14)

Travel time to center (in min) -0.24∗∗∗ -0.25∗∗∗ -0.24∗∗∗

(0.04) (0.04) (0.07)

City × Year-quarter FE ✓ ✓ ✓ ✓ ✓ ✓

Property characteristics ✓ ✓ ✓ ✓

Borough FE ✓ ✓
N 87497 87497 87497 86162 86162 86162
Adj. R2 0.04 0.06 0.06 0.04 0.06 0.06
Mean(APD) -1.65 -1.65 -1.65 -1.67 -1.67 -1.67

Notes: This table shows results for regressions of the asking price discount on the distance to the city center as
specified in Regression (1). “APD” refers to the asking price discount in percent. Standard errors (in parentheses)
are clustered at the borough (Stadtbezirk) level. The property characteristics are control variables. See Appendix
A.1 for a full list of these characteristics. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.
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B.6 Market tightness in German cities

Next, we present results for regressions of contact clicks per ad on distance to the city center.

The data is from immobilienscout24.de. Since in this dataset we do not have the exact location

of each apartment, but only the ZIP Code, we calculate distances to the city center using the

centroids of ZIP Code areas. For the same reason, we cannot present results with ZIP Code fixed

effects. In addition to year-quarter- and city fixed effects, we control for the following property

characteristics: size in square meters, number of rooms, bathrooms, kitchens, and balconies, floor

number of the apartment, building year category, type of heating system, whether the building is

a landmark, and whether the apartment is owner-occupied or rented. The results are documented

in Table 11. The number of contact clicks per ad decreases significantly with distance to the city

center, confirming the results from the binned scatterplot in the main text.

Table 11: Contact clicks and distance to the city center, Germany (2012 – 2024)

(1) (2)
Clicks Clicks

Distance to center (in km) -0.49∗∗∗ -0.46∗∗∗

(0.10) (0.10)

City × Year-quarter FE ✓ ✓

Property characteristics ✓
N 192512 192512
Adj. R2 0.20 0.20
Mean(Clicks) 20.72 20.72

Notes: This table shows results for regressions of contact clicks per advertisement on the distance to the city center
as specified in Regression (1). “Clicks” refers to the to contact clicks per ad as defined in the text. Standard errors
(in parentheses) are clustered at the ZIP Code (PLZ) level. The property characteristics are control variables. The
data are from immobilienscout24.de. See text for a full list of these characteristics. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ :
p < 0.01.
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C Summary statistics

C.1 German cities

Table 12: Summary statistics: time on the market and prices in German cities (2012–2024)

Time on the market in weeks Sales price in 1000C

City Mean SD P25 p75 Mean SD P25 P75 N
Hamburg 12.38 15.01 2.40 16.50 392 335 191 475 20303
Munich 11.59 15.29 2.00 15.30 495 324 278 615 26424
Cologne 11.01 14.88 1.90 14.00 241 159 130 308 14957
Frankfurt 14.80 18.01 2.50 19.90 384 262 200 495 15428
Duesseldorf 13.50 20.15 2.30 16.50 305 273 132 379 10390

Notes: This table reports summary statistics of time on the market and sales prices by city for the period 2012-
2024. All estimates are based on the matched dataset. N is the total number of transactions in the respective
matched dataset.

C.2 U.S. cities

Table 13: Summary statistics: time on the market and prices in U.S. cities (2012–2023)

Time on the market in weeks Sales price in 1000$

MSA Mean SD P25 p75 Mean SD P25 P75 Nr. ZIP Codes N
Atlanta-Sandy Springs-Alpharetta, GA 6.70 5.06 3.72 8.59 274 188 150 348 190 26992
Austin-Round Rock-Georgetown, TX 5.93 4.75 2.93 7.71 413 263 238 502 73 10509
Baltimore-Columbia-Towson, MD 7.36 5.99 3.63 9.48 405 179 281 496 121 17477
Boston-Cambridge-Newton, MA-NH 7.49 6.46 3.21 11.20 577 345 359 673 247 24295
Charlotte-Concord-Gastonia, NC-SC 10.87 7.42 6.43 13.29 256 175 148 315 105 13508
Chicago-Naperville-Elgin, IL-IN-WI 8.30 5.27 5.12 10.25 288 215 159 348 342 25102
Cincinnati, OH-KY-IN 10.87 9.51 6.71 13.71 188 105 118 236 123 17681
Dallas-Fort Worth-Arlington, TX 5.83 3.75 3.42 7.08 285 193 166 351 245 18665
Denver-Aurora-Lakewood, CO 4.08 6.15 1.21 4.71 455 198 315 561 108 15480
Detroit-Warren-Dearborn, MI 5.04 4.24 2.47 6.49 210 121 121 275 201 16703
Houston-The Woodlands-Sugar Land, TX 6.17 4.42 3.14 8.00 266 201 156 302 204 29363
Las Vegas-Henderson-Paradise, NV 9.44 7.12 6.00 11.21 296 145 200 366 62 8858
Los Angeles-Long Beach-Anaheim, CA 5.97 4.78 3.96 7.09 933 735 512 1061 337 30265
Miami-Fort Lauderdale-Pompano Beach, FL 9.93 5.29 7.01 11.26 533 601 274 565 174 7709
Minneapolis-St. Paul-Bloomington, MN-WI 6.77 7.31 3.08 8.33 307 146 210 374 196 27638
New York-Newark-Jersey City, NY-NJ-PA 11.12 9.04 5.59 14.21 627 650 367 695 739 23776
Orlando-Kissimmee-Sanford, FL 7.81 7.95 3.15 10.57 279 142 179 349 85 11945
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 7.96 5.92 4.06 10.26 320 165 208 390 270 11026
Phoenix-Mesa-Chandler, AZ 7.01 3.55 4.87 8.13 338 241 200 409 142 20050
Pittsburgh, PA 13.62 7.18 8.57 16.57 176 111 102 221 149 21432
Portland-Vancouver-Hillsboro, OR-WA 4.95 5.23 1.59 6.32 426 184 294 522 110 15046
Riverside-San Bernardino-Ontario, CA 7.20 4.65 4.48 8.73 375 203 234 478 125 17533
Sacramento-Roseville-Folsom, CA 4.21 4.07 1.86 5.14 424 208 288 519 85 12198
San Antonio-New Braunfels, TX 8.11 5.58 4.79 9.86 238 125 151 304 93 13386
San Diego-Chula Vista-Carlsbad, CA 4.54 4.41 2.14 5.36 791 531 480 900 84 12239
San Francisco-Oakland-Berkeley, CA 2.77 1.56 1.81 3.16 1218 680 757 1523 130 8610
Seattle-Tacoma-Bellevue, WA 3.27 3.26 1.11 4.30 599 390 356 730 140 11693
St. Louis, MO-IL 11.85 27.78 5.29 12.86 182 137 94 230 213 25043
Tampa-St. Petersburg-Clearwater, FL 7.57 5.83 3.14 10.64 281 191 164 345 126 18144
Washington-Arlington-Alexandria, DC-VA-MD-WV 6.22 5.10 3.13 7.79 541 293 342 661 248 23122

Notes: This table reports summary statistics of time on the market and sales prices by MSA for the period 2012 to
2023. N is the number of ZIP-Code-year-month observations in the respective subset of data.
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D Robustness analysis

D.1 Results for individual cities

Germany. We run Regression (1) for each city separately and report the coefficients with

the corresponding 95% confidence intervals by city bundled in Figure 13. For all cities, the

coefficients for both kilometer distance and car travel time are positive and highly significant.

The coefficient magnitudes are similar across cities, especially after including controls.

Figure 13: Time on the market and distance to city center by city (2012–2024)

(a) Distance to city center (in km)
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(b) Travel time to city center (in min)
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Notes: These figures show the OLS regression coefficients of distance to the city center as specified in (1) with 95%
confidence intervals with the standard errors clustered at the borough (Stadtbezirk) level. All regressions include
year-quarter fixed effects. See Appendix A.1 for a full list of property characteristics controls.

United States. We test whether we can find the time on the market gradient for individual

MSAs. For all cities, we find a positive time on the market gradient, with the exception of

New York-Newark-Jersey City, NY-NJ-PA and San Francisco-Oakland-Berkeley, CA. For New

York-Newark-Jersey City, NY-NJ-PA, the estimate is indistinguishable from zero, which stems

from complex spatial patterns in the large housing market of New York City MSA. For San

Francisco-Oakland-Berkeley, CA, the Realtor.com data show a larger inventory than the Redfin

data, suggesting that the latter do not provide good coverage. In fact, with the Realtor.com data,

we find a positive slope for San Francisco.
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Table 14: TOM and price gradient by MSA (Redfin data), 2012-2023

MSA TOM gradient Price gradient P-value TOM P-value Price N
Atlanta-Sandy Springs-Alpharetta, GA 0.066 -0.004 0.00 0.00 27278
Austin-Round Rock-Georgetown, TX 0.099 -0.014 0.00 0.00 10509
Baltimore-Columbia-Towson, MD 0.110 0.000 0.00 0.87 17413
Boston-Cambridge-Newton, MA-NH 0.054 -0.006 0.00 0.00 35411
Charlotte-Concord-Gastonia, NC-SC 0.103 -0.008 0.00 0.00 13508
Chicago-Naperville-Elgin, IL-IN-WI 0.028 -0.010 0.00 0.00 49128
Cincinnati, OH-KY-IN 0.056 0.001 0.01 0.70 17681
Dallas-Fort Worth-Arlington, TX 0.039 -0.005 0.00 0.00 34692
Denver-Aurora-Lakewood, CO 0.172 -0.002 0.00 0.24 15480
Detroit-Warren-Dearborn, MI 0.024 0.002 0.00 0.07 28146
Houston-The Woodlands-Sugar Land, TX 0.049 -0.004 0.00 0.00 29363
Las Vegas-Henderson-Paradise, NV 0.051 -0.002 0.00 0.07 8858
Los Angeles-Long Beach-Anaheim, CA 0.034 -0.002 0.00 0.23 48366
Miami-Fort Lauderdale-Pompano Beach, FL 0.015 -0.002 0.02 0.05 23083
Minneapolis-St. Paul-Bloomington, MN-WI 0.112 -0.005 0.00 0.00 28208
New York-Newark-Jersey City, NY-NJ-PA -0.003 -0.002 0.72 0.04 86424
Orlando-Kissimmee-Sanford, FL 0.092 -0.006 0.02 0.01 12230
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.054 -0.000 0.00 0.98 38705
Phoenix-Mesa-Chandler, AZ 0.052 -0.004 0.00 0.01 20330
Pittsburgh, PA 0.075 -0.003 0.00 0.05 21432
Portland-Vancouver-Hillsboro, OR-WA 0.130 -0.007 0.00 0.00 15614
Riverside-San Bernardino-Ontario, CA 0.033 -0.005 0.00 0.00 17818
Sacramento-Roseville-Folsom, CA 0.065 0.003 0.00 0.08 12198
San Antonio-New Braunfels, TX 0.084 0.005 0.00 0.00 13386
San Diego-Chula Vista-Carlsbad, CA 0.084 0.001 0.00 0.45 12095
San Francisco-Oakland-Berkeley, CA -0.019 -0.005 0.01 0.05 18716
Seattle-Tacoma-Bellevue, WA 0.058 -0.009 0.00 0.00 20158
St. Louis, MO-IL 0.266 -0.005 0.00 0.00 25043
Tampa-St. Petersburg-Clearwater, FL 0.113 -0.003 0.00 0.02 18144
Washington-Arlington-Alexandria, DC-VA-MD-WV 0.059 -0.005 0.00 0.00 35537

Notes: This table reports the output of regressions of time on the market in weeks on distance to the city center,
median income, property characteristics and year-quarter fixed effects by MSA. The underlying data is for single-
family houses. Information on the data sources are in the text. N stands for the number of ZIP-Code-year-month
observations.
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D.2 COVID

Table 15: TOM gradients before and after COVID, Germany (2012–2024)

(1) (2) (3)
Full sample Pre-2020 Post-2020

Distance to center (in km) 0.23*** 0.24*** 0.15***
(0.03) (0.04) (0.03)

City × Year-quarter FE ✓ ✓ ✓

Property characteristics ✓ ✓ ✓
N 87497 61848 25645
R2 0.12 0.14 0.30
Mean(TOM) 12.47 12.42 12.56

Notes: This table displays the output of Regression (1) on time on the market (TOM). The list of property char-
acteristics is available in Appendix A.1. Regressions are based on the matched sample for all cities covering the
period between 2012 and 2024. Standard errors (in parentheses) are clustered at the borough (Stadtbezirk) level.
∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.

Table 16: TOM gradients before and after COVID, U.S. (2012–2023)

(1) (2) (3)
Full sample Pre-2020 Post-2020

Distance to center (in km) 0.04*** 0.06*** 0.01***
(0.004) (0.004) (0.003)

Median income -0.46*** -0.53*** -0.82***
(0.054) (0.076) (0.054)

MSA × Year-month FE ✓ ✓ ✓

State FE ✓ ✓ ✓

Property characteristics ✓ ✓ ✓

Demographic controls ✓ ✓ ✓
N 754955 494468 260487
Zip-codes 5467 5457 5460
Adj. R2 0.28 0.27 0.20
Mean(TOM) 7.63 8.87 5.28

Notes: This table displays the output of Regression (1) on time on the market (TOM). Regressions are based on
data for the 30 largest MSAs covering the period between 2012 and 2023. Standard errors (in parentheses) are
clustered at the ZIP-Code level. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.
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Figure 14: Variation over time of the TOM gradient, U.S. (2018–2023)
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Notes: This figure displays outputs of Regression (1) on time on the market (TOM) by year. Regressions are based
on data for the 30 largest MSAs. 95% Confidence bands are constructed using standard errors clustered at the
ZIP-Code level.
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D.3 Different housing types

Table 17: Time on the market and distance to city center, U.S.: all housing types (2012–2023)

(1) (2) (3) (4) (5) (6)
TOM TOM TOM TOM TOM TOM

Distance to center (in km) 0.02*** 0.02*** 0.03***
(0.002) (0.002) (0.003)

Travel time to center (in min) 0.02*** 0.02*** 0.04***
(0.003) (0.003) (0.004)

Median income -0.53*** -0.44*** -0.53*** -0.40***
(0.053) (0.052) (0.052) (0.051)

MSA × Year-month FE ✓ ✓ ✓ ✓ ✓ ✓

Property type FE ✓ ✓ ✓ ✓ ✓ ✓

State FE ✓ ✓ ✓ ✓ ✓ ✓

Property characteristics ✓ ✓

Demographic controls ✓ ✓
N 1342681 1342681 1342681 1342681 1342681 1342681
ZIP Codes 5128 5128 5128 5128 5128 5128
Adj. R2 0.26 0.26 0.27 0.26 0.26 0.27
Mean(TOM) 7.64 7.64 7.64 7.64 7.64 7.64

Notes: This table displays the output of Regression (1) on time on the market (TOM). The first three columns show
the results for distance to the city center measured in kilometers, while the last three columns show the results for
the car travel time to the city center measured in minutes. Regressions are based on data for the 30 largest MSAs
covering the period between 2012 and 2023. Standard errors (in parentheses) are clustered at the ZIP-Code level.
∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.

18



Table 18: Time on the market and distance to the city center by property type, U.S. (2012–2023)

(1) (2) (3) (4)
Single-family Condos Multi-family Townhouse

Distance to center (in km) 0.04*** 0.02*** 0.04*** 0.03***
(0.004) (0.005) (0.009) (0.004)

Median income -0.41*** -0.01 -0.80*** 0.02
(0.050) (0.152) (0.295) (0.141)

MSA × Year-month FE ✓ ✓ ✓ ✓

State FE ✓ ✓ ✓ ✓

Property characteristics ✓ ✓ ✓ ✓

Demographic controls ✓ ✓ ✓ ✓
N 682641 321867 93061 244968
ZIP Codes 4955 2428 918 1840
Adj. R2 0.30 0.35 0.15 0.30
Mean(TOM) 7.60 7.84 9.52 6.75

Notes: This table displays the output of Regression (1) on time on the market (TOM). The four columns show the
results for distance to the city center measured in kilometers. Regressions are based on data for each property type
separately for the 30 largest MSAs covering the period between 2012 and 2023. Standard errors (in parentheses)
are clustered at the ZIP-Code level. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.
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Table 19: Log sales prices and distance to the city center by property type, U.S. (2012–2023)

(1) (2) (3) (4)
Single-family Condos Multi-family Townhouse

Distance to center (in km) -0.004*** -0.002*** -0.005*** -0.003***
(0.000) (0.001) (0.001) (0.001)

Median income 0.085*** 0.176*** 0.190*** 0.236***
(0.006) (0.015) (0.022) (0.020)

MSA × Year-month FE ✓ ✓ ✓ ✓

State FE ✓ ✓ ✓ ✓

Property characteristics ✓ ✓ ✓ ✓

Demographic controls ✓ ✓ ✓ ✓
N 682641 321867 93061 244968
ZIP Codes 4955 2428 918 1840
Adj. R2 0.78 0.71 0.84 0.75
Mean(Log price) 12.69 12.34 12.80 12.49

Notes: This table displays the output of Regression (1) on log sales prices. The four columns show the results for
distance to the city center measured in kilometers. Regressions are based on data for each property type separately
for the 30 largest MSAs covering the period between 2012 and 2023. Standard errors (in parentheses) are clustered
at the ZIP-Code level. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.
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D.4 Alternative city definitions

Table 20: Price and liquidity gradients for functional urban areas, U.S. (2012–2023)

(1) (2) (3) (4)
TOM Price TOM Price

Distance to MSA center (in km) 0.015*** -0.003***
(0.003) (0.000)

Distance to FUA center (in km) 0.013*** -0.005***
(0.002) (0.000)

Median income 0.156** 0.156*** 0.155** 0.146***
(0.061) (0.008) (0.062) (0.008)

FUA × Year-month FE ✓ ✓ ✓ ✓

State FE ✓ ✓ ✓ ✓

Property characteristics ✓ ✓ ✓ ✓

Demographic controls ✓ ✓ ✓ ✓
N 656524 656524 656524 656524
ZIP Codes 4746 4746 4746 4746
Adj. R2 0.44 0.79 0.44 0.80
Mean dependent variable 7.15 12.74 7.15 12.74

Notes: This table displays the output of Regression (1) on time on the market (in weeks) and log sales prices. The
four columns show the results for distance to the city center measured in kilometers. In the first two columns, the
distance is measured to the city hall of the respective MSA, while in the last two columns, the distance is measured
to the location with the highest residential built-up volume within the functional urban area (FUA). The regressions
are based on data for single-family dwellings in the 30 largest FUAs for the period 2012-2023. Standard errors
(in parentheses) are clustered at the ZIP-Code level. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.

21



D.5 Alternative city centers

Table 21: Price and liquidity gradients using alternative city centers, Germany (2012–2024)

(1) (2) (3) (4) (5) (6)
TOM TOM TOM Price Price Price

Distance to center (in km) 0.28*** 0.23*** 0.15** -0.05*** -0.05*** -0.04***
(0.06) (0.04) (0.06) (0.01) (0.01) (0.01)

City × Year-quarter FE ✓ ✓ ✓ ✓ ✓ ✓

Property characteristics ✓ ✓ ✓ ✓

Borough FE ✓ ✓
N 61073 61073 61073 61073 61073 61073
Adj. R2 0.05 0.12 0.12 0.21 0.81 0.82
Mean dep. variable 12.85 12.85 12.85 12.48 12.48 12.48

Notes: This table displays the output of Regression (1) on time on the market (in weeks) and log sales prices. The
six columns show the results for distance to the city center measured in kilometers. The distance is measured to
the centroid of the business district with the highest land value (Bodenrichtwert) in the city. The regressions are
based on data for apartments in Hamburg, Cologne, Frankfurt and Duesseldorf for the period 2012-2024. Standard
errors (in parentheses) are clustered at the borough (Stadtbezirk) level. ∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.

D.6 Properties that do not get sold

We identify listed properties that do not get sold via three steps. First, we match all ads with

transactions that occurred within the same neighborhood (Stadtteil). Each ad is then associated

with a set of potential transactions in the neighborhood. Out of these ads, we identify those

as “unsuccessful” that are associated with transactions one year after or before the ad was

published. Second, we identify ads as “unsuccessful” that are associated with transactions for

which the living area of the matched apartment differs by more than 50%. Third, we identify

ads as “unsuccessful” for which the remaining potential matches have a living area and building

year that deviate by more than 10% and 10 years.

While this algorithm will identify listings that, with a very high probability, did not end up

in a sale, it does not identify all listings that do not end up in a sale. As such, the algorithm

presents a lower bound of “unsuccessful” ads. However, we do not have reasons to believe

that this lower bound is systematically biased across space, which is the variation we want to

explore. We focus only on the three largest cities in our German sample—Hamburg, Munich,

and Cologne—because, for the other cities, the number of “unsuccessful” ads is too small to

conduct a meaningful statistical analysis.
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We first analyze the spatial distribution of unsuccessful ads, measured as the percentage of

unsuccessful ads in terms of total ads at the city level, displayed in Figure 15. In all three cities,

the relative number of unsuccessful ads is not larger in the city center. If anything, we see that

this number slightly increases with distance to the city center.

Figure 15: Unsuccessful ads and distance to the city center, Germany (2012–2024)
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Notes: These figures display the percentage of ads that do not result in a sale by distance to the city center with 6
equally-sized distance bins. The algorithm to identify the “unsuccessful” ads is described in the text.

To conduct a more formal assessment, we run a survival analysis on time on the market. In

other words, we test for the relationship between expected time on the market and distance to

the city center by estimating the following hazard function for time on the market:

h(TOMit) = h0(TOM)× exp
[
γ ×distancei +δ ×Xi + ft +gc + εit

]
, (25)

where h0(TOM) is the baseline hazard rate which depends on the assumption on the functional

form of the distribution of error terms εit . The hazard rate h(TOMit) denotes the probability of

property i being sold at time t, conditional on the seller listing the property to that point in time

and the distance to the city center, the property characteristics Xi, time fixed effects ft , and city

fixed effects gc. We estimate the hazard rate using various error term distributions and present

the results in Table 22. The first row of the table displays the effect of distance to the city center

on the hazard rate of time on the market, given by its hazard ratio. Across all specifications, it is

significantly larger than one, meaning that a greater distance to the city center is associated with

a longer expected time on the market. In other words, an ad has a higher chance of “surviving”,

that is, not ending up in a sale, in the outskirts than in the city center.
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Table 22: Expected time on the market and distance to city center, Germany (2012–2024)

Exponential Weibull Cox
main
Distance to center (in km) 1.013*** 1.012*** 1.014***

(0.0032) (0.0037) (0.0037)

City × Year FEs ✓ ✓ ✓

Property characteristics ✓ ✓ ✓
N 56279 56279 56279

Notes: This table displays the output of Regression (25) for three different duration models of time on the market.
The first row displays the estimated hazard ratio of predicted distance to city center. The regressions are based on
data for apartments in Hamburg, Cologne and Munich. Standard errors are in parentheses. ∗ : p < 0.1;∗∗ : p <
0.05;∗∗∗ : p < 0.01.

D.7 Focal ZIP Codes

Table 23: Time on the market and distance to job centers, U.S. (2012–2023)

(1) (2) (3) (4)
TOM TOM TOM TOM

Distance to largest job center (in km) 0.02*** 0.02***
(0.002) (0.002)

Distance to nearest job center (in km) 0.02*** 0.02***
(0.003) (0.002)

Median income 0.11* -0.15**
(0.065) (0.058)

MSA × Year-month FE ✓ ✓ ✓ ✓

State FE ✓ ✓ ✓ ✓

Property characteristics ✓ ✓

Demographic controls ✓ ✓
N 595808 595808 595808 595808
ZIP codes 4312 4312 4312 4312
Adj. R2 0.39 0.42 0.39 0.43
Mean(TOM) 7.27 7.27 7.27 7.27

Notes: This table displays the output of Regression (1) on time on the market (in weeks) using the job access
index instead of distance to the city center. The regressions are based on data for single-family dwellings in the
30 largest MSAs for the period 2012-2023. Standard errors (in parentheses) are clustered at the ZIP-Code level.
∗ : p < 0.1;∗∗ : p < 0.05;∗∗∗ : p < 0.01.

24



E Maximum in the seller’s optimization problem
The first-order condition of the seller’s profit maximization problem is

∂Π

∂ p(d)|d
= γ(d)+ p(d)

∂γ

∂ p(d)|d
−β Π(d)

∂γ

∂ p(d)|d
= 0. (26)

Hence, the second-order condition for a maximum is

∂ 2Π

∂ p2(d)|d
= 2

∂γ

∂ p(d)|d
+

∂ 2γ

∂ p2(d)|d
(

p(d)−β Π(d)
)
< 0. (27)

Using (11), we know that

∂γ

∂ p(d)|d
=−1−πβ

β
< 0. (28)

Therefore,

∂ 2γ

∂ p2(d)|d
= 0, (29)

and

∂ 2Π

∂ p2(d)|d
=−2

1−πβ

β
< 0, (30)

which provides the required maximum.
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F Extended model with bargaining
We extend our model with a bargaining process, following Carrillo (2012). With this addition,

the model features asking prices and sales prices, which allows us to form a model notion of

an asking price discount (APD), as in the supplementary empirical results. In this model, the

asking price discount will always be weakly negative. In the data, it can reach positive values,

however, in most cases it is indeed weakly negative.

The search process changes as follows. When a buyer visits a housing unit, the buyer and the

seller may or may not bargain, which is determined stochastically. With probability θ , the seller

does not accept counteroffers, and p(d) is a take-it-or-leave-it offer (“no-counteroffer scenario”,

subscript n). The buyer accepts or rejects the offer. If the buyer accepts, the seller receives p(d),

and the buyer receives their first housing dividend ε and incurs their first commuting cost τ(d)

in the following period. If the buyer rejects, the seller relists the property, and the buyer visits

a new housing unit in the following period. With probability 1−θ , the buyer can bargain by

making a take-it-or-leave-it counteroffer o(d) to the seller (“counteroffer scenario”, subscript

c). If the buyer makes a counteroffer, the seller accepts or rejects the offer. The outcomes of

accepting or rejecting the offer are analogous to those in the no-counteroffer scenario.

Changes in the seller’s problem. The seller maximizes their expectd profit Π(d) over an

asking price p(d) and a reservation value r(d). We assume that buyers have perfect information

about sellers’ decision problems. Hence, in the counteroffer scenario, the offer o(d) is equal

to the seller’s reservation value r(d), as this offer corresponds to the lowest price the seller is

willing to accept. In the following, we denote by γn(d) the probability that a buyer is willing to

buy in the no-counteroffer scenario. The analogous probability in the counteroffer scenario is

γc(d). The expected profit is given by

Π(d) = θ

(
γn(d)p(d)+

(
1− γn(d)

)
β Π(d)

)
+
(
1−θ

)(
γc(d)max

[
r(d),β Π(d)

]
+
(
1− γc(d)

)
β Π(d)

)
. (31)

Changes in the buyer’s problem. The buyer’s search value is given by

W = Ed,ε
[
θVn(d,ε)+

(
1−θ

)
Vc(d,ε)

]
. (32)

The buyer’s value in the no-counteroffer scenario is given by
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Vn(d,ε) = max
[
V (d,ε)− p(d),βW

]
. (33)

The buyer’s value in the counteroffer scenario is given by

Vc(d,ε) = max
[
δ (d)

(
V (d,ε)−o(d)

)
+
(
1−δ (d)

)(
βW
)
,βW

]
, (34)

where δ (d) denotes the probability that the seller accepts the buyer’s counteroffer. The seller

always accepts the optimal counteroffer o(d) = r(d). Hence, δ (d) = 1 at all distances to the

city center in equilibrium.

F.1 Equilibrium in the extended model

Seller’s optimization. Since the counteroffer o(d) = r(d) is the lowest price that the seller is

willing to accept, the seller’s reservation value r(d) = β Π(d). The expression for the expected

profit (31) then simplifies to

Π(d) = θγn(d)p(d)+
(
1−θγn(d)

)
r(d). (35)

Optimizing with regard to the asking price p(d) yields

p(d) = r(d)− γn(d)
∂γn/∂ p(d)|d

, (36)

and plugging the condition r(d) = β Π(d) into (35) yields

r(d) =
βθγn(d)p(d)

1−β
(
1−θγn(d)

) . (37)

The pair of the optimal asking price and reservation value for a given distance to the city center

solves equations (36) and (37) simultaneously.

Buyer’s optimization. Via the buyer value function in the no-counteroffer scenario (33), we

define a reservation dividend ε∗n (d) such that a buyer is indifferent indifferent between buying a

housing unit and continuing to search:

V (d,ε∗n (d))− p(d) = βW. (38)

Analogously, via the buyer value function in the counteroffer scenario (34), we define a reserva-

tion dividend ε∗c (d) such that

V (d,ε∗c (d))− r(d) = βW. (39)
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Probability of sale. The probability of sale conditional on a bargaining scenario is equal to the

probability that the buyer’s idiosyncratic dividend is above their respective reservation dividend.

Hence, in the no-counteroffer scenario,

γn(d) = ε̃ − ε
∗
n (d), (40)

and in the counteroffer scenario,

γc(d) = ε̃ − ε
∗
c (d). (41)

Thus, for the derivative in the seller optimality condition (36) we have that

∂γn

∂ p(d)|d
=− ∂ε∗n

∂ p(d)|d
. (42)

By proceeding as in the main text, we get

ε
∗
n (d) =

1−πβ

β
p(d)+ τ(d)−

(
1−π

)
Π(d)+

(
π −πβ

)
W (43)

and

∂γn

∂ p(d)|d
=−1−πβ

β
. (44)

Analogous relations hold for the counteroffer scenario.

F.2 Analytical results in the extended model

Again, we start with auxiliary derivations. First, Lemma 1 enables us to simplify expressions

that contain reservation dividends and probabilites of sale.

Lemma 1. The buyer reservation dividends in the counteroffer scenario and the no-counteroffer

scenario relate as ε∗c (d) = 2ε∗n (d)− ε̃ . The probabilities of sale in these two scenarios relate as

γc(d) = 2γn(d).

Proof. Using the buyer indifference condition (39) and the linear expression of the buyer value

function (9), we have that

ε
∗
c (d) =

1−πβ

β
r(d)+ τ(d)−

(
1−π

)(
Π(d)+W

)
+
(
1−πβ

)
W (45)

= ε
∗
n (d)− γn(d), (46)
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where the second line follows from the seller optimality condition (36), the linear expression of

the reservation value (43), and the value of the derivative ∂γn/∂ p(d)|d (44) . Therefore, we also

have that ε∗c (d) = 2ε∗n (d)− ε̃ , as well as γc(d) = 2γn(d), via the equilibrium relations between

reservation dividends and probabilities of sale (40) and (41).

Lemma 2. The reservation dividends in the no-counteroffer scenario ε∗n (d) and in the coun-

teroffer scenario ε∗c (d) increase with distance to the city center d.

Proof. We know from (43) that

ε
∗
n (d) =

1−πβ

β
p(d)+ τ(d)−

(
1−π

)
Π(d)+

(
π −πβ

)
W.

Analogously to the main derivations, we reformulate the asking price p(d) and the expected

profit from reselling the property Π(d) in terms of the reservation dividend ε∗n (d). First, we

combine the seller optimality conditions (36) and (37) and get

p(d) =−
(
1−β

)
γn(d)+βθγ 2

n(d)(
1−β

)(
∂γn/∂ p(d)|d

) . (47)

Expressing the probability of sale γn(d) and the derivative ∂γn/∂ p(d)|d in terms of the reserva-

tion dividend ε∗n (d) using the equilibrium relations (40) and (44), we have that

p(d) =
β

1−πβ

(
ε̃ − ε

∗
n (d)

)
+

β 2θ(
1−β

)(
1−πβ

)(ε̃ − ε
∗
n (d)

)2
. (48)

Next, using the seller’s conditions (35) and (36), we get

Π(d) = p(d)+
γn(d)−θγ2

n (d)
∂γn/∂ p(d)|d

, (49)

which, using (48) and again expressing the probability of sale and the derivative in terms of the

reservation dividend via (40) and (44), amounts to

Π(d) =
βθ(

1−πβ
)(

1−β
)(ε̃ − ε

∗
n (d)

)2
. (50)

Therefore, we can express the reservation dividend as

2ε
∗
n (d)−1+

πβθ

1−πβ

(
ε̃ − ε

∗
n (d)

)2
= τ(d)+

(
π −πβ

)
W. (51)

We take the derivative with respect to the distance to the city center d on both sides and get
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∂ε∗n
∂d

(
2−2

πβθ

1−πβ
(ε̃ − ε

∗
n (d))

)
︸ ︷︷ ︸

>0

=
∂τ

∂d
(52)

and therefore ∂ε∗n/∂d > 0, given that ∂τ/∂d > 0. Via Lemma 1, also ∂ε∗c /∂d > 0.

Corollary 1. The expected profit Π(d), the asking price p(d), the seller reservation value r(d),

and the expected sales price E
[
Sales price(d)

]
= θ p(d)+

(
1−θ

)
r(d) decrease with distance

to the city center d.

Proof. Using (50), we have that

∂Π

∂d
=

2βθ(
1−πβ

)(
1−β

)(ε̃ − ε
∗
n (d)

)(
−∂ε∗n

∂d

)
< 0, (53)

where ∂ε∗n/∂d > 0 via Lemma 2. Next, using (48), we get

∂ p
∂d

=− β

1−πβ

∂ε∗n
∂d

+
2β 2θ(

1−πβ
)(

1−β
)(ε̃ − ε

∗
n (d)

)(
−∂ε∗n

∂d

)
< 0. (54)

We express the seller reservation value in terms of the reservation dividend via (48), the seller

optimality condition (36), the equilibrium relation between the reservation dividend and proba-

bility of sale in the no-counteroffer scenario (40), and the derivative (44) of the probability of

sale in the no-counteroffer scenario with respect to the asking price:

r(d) = p(d)− β

1−πβ

(
ε̃ − ε

∗
n (d)

)
. (55)

Then,

∂ r
∂d

=
2β 2θ(

1−πβ
)(

1−β
)(ε̃ − ε

∗
n (d)

)(
−∂ε∗n

∂d

)
< 0, (56)

using (54). The expected sales price E
[
Sales price(d)

]
= θ p(d)+

(
1−θ

)
r(d) decreases with

distance to the city center, as both the asking price p(d) and the seller reservation value r(d)

decrease with distance to the city center.

Time on the market. The probability γnc(d) that a housing unit sells in a period is given via

the probabilities for the two bargaining scenarios and the corresponding probabilities of sale:

γnc(d) = θγn(d)+
(
1−θ

)
γc(d). (57)

The expected time on the market at a given distance to the city center is
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E
[
TOM(d)

]
=

1
γnc(d)

. (58)

Proposition 1. The expected time on the market E
[
TOM(d)

]
increases with distance to the city

center d in the extended model with bargaining.

Proof. Using Lemma 1 and the equilibrium relations between the reservation dividends and

the probabilities of sale (40) and (41), we can express the expected time on the market in terms

of the reservation dividend in the no-counteroffer scenario:

E
[
TOM(d)

]
=

1(
2−θ

)(
ε̃ − ε∗n (d)

) . (59)

The derivative of the expected time on the market with respect to the distance to the city center

amounts to

∂E
[
TOM

]
∂d

=−
((

2−θ
)(

ε̃ − ε
∗
n (d)

))−2

︸ ︷︷ ︸
<0

−
(
2−θ

)︸ ︷︷ ︸
<0

∂ε∗n
∂d︸︷︷︸
>0

> 0. (60)

Intuition. See main text.

Asking price discount. The expected asking price discount at a given distance to the city

center is

E
[
APD(d)

]
= θ ·APDn(d)+

(
1−θ

)
·APDc(d) =

(
1−θ

)
·APDc(d), (61)

where the asking price discount in the no-counteroffer scenario APDn(d) = 0. We define the

asking price discount in the counteroffer scenario analogously to our empirical measure as

APDc(d) =
r(d)− p(d)

p(d)
. (62)

Proposition 2. Given that the probability of no counteroffer θ ∈ (0,1), the expected asking

price discount E
[
APD(d)

]
< 0 decreases with distance to the city center d.

Proof. If θ = 1, then the asking price discount is always equal to zero, as the probability of

being in the no-counteroffer scenario is equal to one, and hence the asking price is the same as

the sales price at all distances to the city center. This corresponds to the setup in the main model.

In the following, we consider θ < 1. Plugging in the optimal reservation value r(d) of a seller

from (37), we have that
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APDc(d) =− 1−β

1−β +βθ
(
ε̃ − ε∗n (d)

) < 0, (63)

using the equilibrium relation between the reservation dividend and the probability of sale (40).

Hence, we also have that the expected asking price discount E
[
APD(d)

]
=
(
1−θ

)
APDc(d)< 0.

The derivative of the expected asking price discount with respect to the distance to the city center

amounts to

∂E
[
APD

]
∂d

=−
(
1−θ

)(
β −1

)(
1−β +βθ

(
ε̃ − ε

∗
n (d)

))−2

︸ ︷︷ ︸
>0

(
−βθ︸ ︷︷ ︸
<0

−∂ε∗n
∂d︸ ︷︷ ︸
>0

)
< 0, (64)

provided that θ > 0.

Intuition. As for the time on the market, the relevant condition for liquidity in the form of the

asking price discount to decrease with distance to the city center is that reservation dividends

increase with distance to the city center. The asking price and the seller reservation value both

decrease with distance to the city center (see Corollary 1). For the expected asking price discount

to become more negative with distance to the city center, we need that the seller reservation

value decreases more steeply with distance to the city center than the asking price.23 Why is this

condition fulfilled? Recall from the seller optimization that the reservation value is equal to the

discounted profit of the next period in equilibrium, as otherwise, the seller would always reject

the buyer’s optimal counteroffer. For the asking price discount to become more negative with

distance to the city center, we, therefore, need that the expected profit decreases more steeply

than the asking price.24

Intuitively, we can express the expected profit in terms of the probability of sale and the

23Formally,

∂E
[
Discount

]
∂d

=
(
1−θ

)∂

(
r−p

p

)
∂d

=
(
1−θ

)( ∂ r
∂d

1
p(d)

− ∂ p
∂d

r(
p(d)

)2

)
, (65)

such that for the expected discount to decrease with distance to the city center, we need

∂ r/∂d
r(d)︸ ︷︷ ︸
<0

<
∂ p/∂d

p(d)︸ ︷︷ ︸
<0

, (66)

where both sides of the expression are < 0 due to Corollary 1.
24Formally,

∂ r/∂d
r(d)

=
∂
(
βΠ
)
/∂d

βΠ(d)
=

∂Π/∂d
Π(d)

<
∂ p/∂d

p(d)
. (67)
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asking price. Since both the probability of sale and the asking price decrease with distance to

the city center and the expected profit is composed of the two, the expected profit decreases

more steeply than the asking price alone. All of these variables decrease with distance to the city

center because buyers want to be compensated for a higher travel cost with higher reservation

dividends.

Proof: the expected profit decreases more steeply with distance to the city center than the

asking price in relative terms.

Via (35), we can express the expected profit as

Π(d) = θγn(d)p(d)+
(
1−θγn(d)

)
β Π(d),

since the seller’s reservation value r(d) = β Π(d) via the optimal counteroffer of the buyer.

Then,

Π(d) =
θγn(d)p(d)

1−β +θβγn(d)
(68)

and

∂Π

∂d
=

(
1−β +θβγn(d)

)(
θ

∂γn
∂d p(d)+θγn(d)

∂ p
∂d

)
−θ 2β

∂γn
∂d γn(d)p(d)(

1−β +θβγn(d)
)2 . (69)

The proportional derivative of Π(d) with respect to d is then

∂Π/∂d
Π(d)

=
∂γn/∂d
γn(d)︸ ︷︷ ︸
<0

+
∂ p/∂d

p(d)︸ ︷︷ ︸
<0

−
(
θβ
)(

∂γn/∂d
)

1−β +θβγn(d)︸ ︷︷ ︸
<0

. (70)

Statement (67) says that

∂Π/∂d
Π(d)

<
∂ p/∂d

p(d)
, (71)

for which to hold we need that

∂γn/∂d
γn(d)

<

(
θβ
)(

∂γn/∂d
)

1−β +θβγn(d)
. (72)

As ∂γn/∂d < 0, this expression simplifies to

1
γn(d)

>
θβ

1−β +θβγn(d)
, (73)

or equivalently
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1−β > 0, (74)

which is true, since β ∈ (0,1). Therefore, ∂Π/∂d
Π(d) < ∂ p/∂d

p(d) , as required.

Relation between time on the market and asking price discount. Via the proofs of Propo-

sitions 1 and 2, we can directly derive that housing units that spend more time on the market

also sell at more negative discounts. Thus, lower liquidity in one measure corresponds to lower

liquidity in the other measure.

Corollary 2. Given that the probability of no counteroffer θ ∈ (0,1), the model correlation

between the expected time on the market E
[
TOM(d)

]
and the expected asking price discount

E
[
Discount(d)

]
is negative.

Proof. We start by expressing the time on the market in terms of the asking price discount.

Then, we evaluate the derivative of E
[
TOM(d)

]
with respect to E

[
APD(d)

]
at a given distance

to the city center. First, from the proofs of Propositions 1 and 2 we have that

E
[
TOM(d)

]
=

βθ

2−θ

( (
β −1

)(
1−θ

)
E
[
Discount(d)

] −1+β

)−1

. (75)

The derivative of the expected time on the market with respect to the expected asking price

discount, given a distance to the city center d is then

∂E
[
TOM

]
∂E
[
Discount(d)

]
|d

=− βθ

2−θ︸ ︷︷ ︸
<0

( (
β −1

)(
1−θ

)
E
[
Discount(d)

] −1+β

)−2

︸ ︷︷ ︸
>0

(
−

(
β −1

)(
1−θ

)(
E
[
Discount(d)

])2

)
︸ ︷︷ ︸

>0

< 0,

(76)

provided that θ ∈
(
0,1
)
. A less negative asking price discount therefore corresponds to a lower

time on the market.

34



G Equilibrium existence and uniqueness
We show existence and uniqueness of an equilibrium in the extended model. The main

model is obtained by setting the probability of the no-counteroffer scenario θ = 1.

G.1 Equilibrium existence

First, we show the existence of a solution. Evidently, we find a solution numerically, never-

theless, we prove its existence formally, following Krainer (2001). As in (9), we can express the

buyer’s value in the extended model as

V (d,ε) =
β

1−πβ

(
ε − τ(d)+

(
1−π

)(
Π(d)+W

))
. (77)

Hence, V (d,ε) is linear in ε and there exist reservation dividends as defined in the buyer indif-

ference conditions (38) and (39). In what follows, we express the other endogenous variables in

terms of the buyer’s reservation dividends, the model parameters, and the travel cost function

to prove uniqueness of the solution. The fact that reservation dividends exist then implies that a

solution also exists, as the remaining objects listed in the previous sentence are exogenous.

G.2 Equilibrium uniqueness

To show uniqueness of the model’s solution, we follow Vanhapelto and Magnac (2024),

showing that two possible ways of expressing the value of search allow for only one value

of the idiosyncratic reservation dividend at every distance to the city center such that both of

these expressions hold. The first expression decreases in the idiosyncratic reservation dividend,

whereas the second expression increases in the idiosyncratic reservation dividend. Hence, given

a set of parameters and a travel cost function, the model’s solution is unique, as we express

all endogenous variables in terms of parameters, the travel cost function, and the idiosyncratic

reservation dividend.

Expression 1. We set up the first expression for the value of search in terms of the buyer’s

reservation dividends via the definitions (32), (33), and (34):

W = Ed,ε
[
θ max

[
V (d,ε)− p(d),βW

]
+
(
1−θ

)
max

[
V (d,ε)− r(d),βW

]]
, (78)

and hence
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W =
1

1−β
Ed,ε

[
θ max

[
V (d,ε)− p(d)−βW,0

]
+
(
1−θ

)
max

[
V (d,ε)− r(d)−βW,0

]]
.

(79)

Next, we express the relations within the max operators in terms of the buyer’s reservation

dividends. Note that when the buyer indifference conditions (38) and (39) hold, we have that

βW =V (d,ε∗n (d))− p(d) =V (d,ε∗c (d))− r(d). (80)

Inserting the linear buyer value (77), we get

βW =
β

1−πβ

(
ε
∗
n (d)− τ(d)+

(
1−π

)(
Π(d)+W

))
− p(d) (81)

and

βW =
β

1−πβ

(
ε
∗
c (d)− τ(d)+

(
1−π

)(
Π(d)+W

))
− r(d). (82)

Hence,

β

1−πβ
ε
∗
n (d) =

β

1−πβ
τ(d)−

β
(
1−π

)
1−πβ

Π(d)+
πβ
(
1−β

)
1−πβ

W + p(d) (83)

and

β

1−πβ
ε
∗
c (d) =

β

1−πβ
τ(d)−

β
(
1−π

)
1−πβ

Π(d)+
πβ
(
1−β

)
1−πβ

W + r(d). (84)

Again using (77), we can express the sum within the first max operator from (79) as

Vm(d,ε)− p(d)−βW =
β

1−πβ
ε +− β

1−πβ
τ(d)+

β
(
1−π

)
1−πβ

Π(d)− p(d)−
πβ
(
1−β

)
1−πβ

W.

Then, via (83), we get

V (d,ε)− p(d)−βW =
β

1−πβ
ε − β

1−πβ
ε
∗
n (d) =

β

1−πβ

(
ε − ε

∗
n (d)

)
. (85)

Analogously, using (84), we have that

V (d,ε)− r(d)−βW =
β

1−πβ

(
ε − ε

∗
c (d)

)
. (86)

We can then express the value of search from (79) as
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W =
1

1−β
Ed,ε

[
θ max

[
β

1−πβ

(
ε − ε

∗
n (d)

)
,0
]
+
(
1−θ

)
max

[
β

1−πβ

(
ε − ε

∗
c (d)

)
,0
]]

,

(87)

which decreases in ε∗n (d) and ε∗c (d).

Expression 2. We set up the second expression via the buyer indifference conditions (38) and

(39). Using (77), we can express the indifference condition for the no-counteroffer scenario (38)

as

W =
1

π −πβ

(
ε
∗
n (d)− τ(d)+

(
1−π

)
Π(d)− 1−πβ

β
p(d)

)
. (88)

Hence,

∂W
∂ε∗n (d)|d

=
2

π −πβ
+

2πβθ(
π −πβ

)(
1−πβ

)(ε̃ − ε
∗
n (d)

)
> 0. (89)

Using the buyer indifference condition from the counteroffer scenario (39) and going through

the same steps yields

W =
1

π −πβ

(
ε
∗
c (d)− τ(d)+

(
1−π

)
Π(d)− 1−πβ

β
r(d)

)
. (90)

Via (36), (44), (47), and the auxiliary expressions for the probabilities of sale, we get

r(d) =
β 2θ

4
(
1−πβ

)(
1−β

)(ε̃ − ε
∗
c (d)

)2 (91)

and

Π(d) =
βθ

4
(
1−πβ

)(
1−β

)(ε̃ − ε
∗
c (d)

)2
. (92)

Then, via (90), the derivative of the search value with respect to the reservation dividend in the

buyer’s price scenario amounts to

∂W
∂ε∗c (d)|d

=
1

π −πβ
+

πβθ

2
(
π −πβ

)(
1−πβ

)(ε̃ − ε
∗
c (d)

)
> 0. (93)

Since the first expression for the value of search decreases in the reservation dividends and the

second one increases in the reservation dividends, there can only be a single pair of reservation

dividends at a given distance to the city center such that both of these conditions are fulfilled.

With W being constant across space, this holds for all distances to the city center.
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H Additional model results

H.1 Steepness of price vs. liquidity gradient

As mentioned in Section 4.3.2., the model predicts the price gradient to be steeper than the

liquidity gradient. For this comparison, we express both gradients in absolute values and in

relative terms to the respective variables. For the expected time on the market, this gradient is∣∣∣∣∂E[TOM]/∂d
E[TOM(d)]

∣∣∣∣= ∣∣∣∣∂γ/∂d
γ(d)

∣∣∣∣ , (94)

which follows from Equations (7), (16) and (17). Using the probability of sale γ(d) here instead

of the reservation dividend ε∗(d) simplifies the comparison to the expression for the relative

price gradient. Using Equations (7), (13), and (18), the relative price gradient amounts to∣∣∣∣∣∣
(
∂γ/∂d

)(
1+2

(
β/
(
1−β

))
γ(d)

)
γ(d)+

(
β/
(
1−β

))(
γ(d)

)2

∣∣∣∣∣∣>
∣∣∣∣∂γ/∂d

γ(d)

∣∣∣∣ . (95)

This is due to the factor 2 in front of (β/(1 − β )), which results from the expression for

expected profit in which the seller obtains a value of selling the property in the next period with

probability (γ(d))2. This option of selling the property in the future is priced in today. For a

given increase in the expected time on the market when going further away from the city center,

the corresponding price decreases more. The demand-driven level of liquidity, given a stationary

equilibrium, will also determine market conditions in the following period in case the seller is

not able to sell their housing unit in this period. With a successful sale in the next period, the

seller then obtains the discounted profit value.

Table 24: Standardized TOM and price gradients, Germany and U.S.

Country Dataset TOM gradient Price gradient
Germany Condos full sample 0.048 -0.202
U.S. Single-family FUA (full sample) 0.029 -0.146
U.S. Single-family MSA (50km radius) 0.048 -0.276
U.S. Single-family MSA (full sample) 0.134 -0.074

Note: This table presents regression coefficients of time on the market (TOM) and log sales price on property
characteristics with time and location fixed effects based on Regression (1). The coefficients are standardized by
the sample standard deviation of the respective variable. For Germany, the fixed effects are at the year-quarter-city
level. For the U.S., the fixed effects are at the year-month-MSA or year-month-FUA level. More information on
data sources is provided in the main text.

Table 24 provides empirical comparisons of the steepness of the price and liquidity gradients
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for Germany and the United States. The theoretical prediction that the price gradient is steeper

than the liquidity gradient holds empirically, except in the U.S. at the MSA level across the full

sample. This is likely due to the spatial boundaries of some MSAs reaching very far out, which

makes the estimates noisier. With functional urban area boundaries, the result holds, as well as

when restricting the U.S.-MSA sample to a 50km radius around the MSA center.

H.2 Spatial distributions of additional variables

Figure 16: Spatial distributions of additional variables, main model

H.3 Alternative travel cost calibration

In the main model, we target a physical cost of car travel when estimating the parameter µ .

This parameter then reflects a conversion of travel time in minutes, fed into the model from our

travel time estimates, to the associated travel cost in model units. Alternatively, we can think of

the travel cost in the model as an opportunity cost which results from lost time due to traveling

to the city center. We also conceptualize of this opportunity cost as translating travel time to the

city center in minutes linearly into a monetary cost via the alternative conversion parameter µalt.

Then, we must specify what a minute of travel time is worth to agents in the model. We do this
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using the population-weighted average hourly wage across our sampled cities. Via the regional

portal of the German Statistics Office, we retrieve average gross hourly wages in Hamburg,

Munich, Cologne, Frankfurt, and Duesseldorf between 2012 and 2021. Net hourly wages are

not available. To get a rough measure of the net hourly wage, we multiply the gross hourly wage

by the fraction of total city-level net household income over total city-level gross household

income, retrieved via the same data source. Next, using the GENESIS database, we retrieve the

German consumer price index between 2012 and 2021 to adjust wages for inflation (variable

code: 61111-0001). We choose 2017 as the base year, as the travel cost measure in Andor et

al. (2020) refers to this year. Figure 17 plots the resulting time series of real net wages for the 5

cities in our sample. The regional database of GENESIS gives us the yearly population levels

(variable code: 12411-01-01-4). Averaging these values across cities and years with city-level

population weights yields a net real hourly wage of 22.91 EUR.

Figure 17: Average net hourly wage across cities

Then, we calculate the average travel time in our sample, multiplied by 2, to get a measure of

daily travel time. In our model, agents travel to and from the city center for 33 minutes per day

on average. Measured in terms of an opportunity cost, if we assume that the value of time lost

can be expressed in terms of the net real average wage, they lose (33/60)×22.91 EUR =12.63

EUR per day. Table 25 and Figure 18 present model results when using the alternative target for

the model-implied travel cost of 12.63 EUR. The results are nearly identical to our main results.

The price and liquidity gradients are slightly less steep.

Table 25: Estimated parameters, all cities pooled, alternative travel cost calibration

Parameter Description Value Bootstr. 95% CI Target statistic Target (model) value
µalt Travel time scaling 0.0045 [0.0044,0.0046] Avg. opportunity cost 12.63 (12.63)e
ε̃alt Dividend dist. bound 0.55 [0.54,0.56] Avg. time on mkt. 12.47 (12.46) wk
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Figure 18: Spatial distributions of liquidity and prices, alternative travel cost calibration

Notes: “TOM” refers to the (expected) time on the market. The data points are calculated using Regression (1)
with year-quarter fixed effects, city fixed effects, and apartment characteristics controls.

H.4 Model results for individual cities

Table 26: Calibrated parameters; individual cities

Parameter Description Value Source
β Discount factor 0.99986 (yearly: 0.95) Standard parameter

π Hamburg Housing match persistence 0.9997 (yearly: 0.90) Apartment holding periods
π Munich " 0.9997 (yearly: 0.91) "
π Cologne " 0.9997 (yearly: 0.90) "
π Frankfurt " 0.9997 (yearly: 0.90) "

πDuesseldorf " 0.9997 (yearly: 0.90) "

Notes: For Hamburg and Frankfurt we do not have (sufficient) data on apartment holding periods available
and use the average holding period from the combined sample.

Table 27: Estimated parameters, individual cities

Parameter Description Value Bootstr. 95% CI Target statistic Target (model) value
µHamburg Travel time scaling 0.0039 [0.0037,0.0041] Daily car op. cost 14.17 (14.17)e
µMunich " 0.0047 [0.0043,0.0049] " 14.17 (14.16)e
µCologne " 0.0106 [0.0100,0.0112] " 14.17 (14.18)e
µFrankfurt " 0.0047 [0.0045,0.0050] " 14.17 (14.17)e

µDuesseldorf " 0.0074 [0.0068,0.0081] " 14.17 (14.16)e
ε̃ Hamburg Dividend dist. bound 0.57 [0.55,0.59] Avg. time on mkt. 12.38 (12.37) wk
ε̃ Munich " 0.62 [0.59,0.64] " 11.59 (11.59) wk
ε̃ Cologne " 0.73 [0.70,0.77] " 11.02 (11.01) wk
ε̃ Frankfurt " 0.44 [0.43,0.46] " 14.80 (14.81) wk

ε̃ Duesseldorf " 0.53 [0.50,0.56] " 13.50 (13.50) wk
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Figure 19: Model results, individual cities

(a) Hamburg (b) Munich

(c) Cologne (d) Frankfurt

(e) Duesseldorf

Notes: “TOM” refers to (expected) time on the market. The data points are calculated using Regression (1) with
year-quarter fixed effects and property characteristics controls.

Figure 20: Normalized spatial liquidity distributions, individual cities

(a) Hamburg (b) Munich (c) Cologne

(d) Frankfurt (e) Duesseldorf

Notes: These figures show the equilibrium expected time on the market from our main model (“frictional search”)
and the expected time on the market from the efficient allocation (“efficient search”) as implied by (23), normalized
by the expected time on the market at the location closest to the city center.
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Figure 21: Normalized spatial price distributions, individual cities

(a) Hamburg (b) Munich (c) Cologne

(d) Frankfurt (e) Duesseldorf

Notes: These figures show the equilibrium prices from our main model (“frictional search”) and the prices from
the efficient allocation (“efficient search”) as specified in (13), normalized by the apartment price at the location
closest to the city center.

Figure 22: Illiquidity discount, individual cities

Notes: This figure shows the price discount due to frictional illiquidity relative to the city center as defined in (24).

H.5 COVID experiment in the model

We test whether our baseline model can replicate the flattening of the price gradient as

documented in Gupta et al. (2022) and produce flattened liquidity gradient as we document

in our empirical results. The COVID-19 pandemic induced a shift to working from home. We

conduct this experiment with all estimated parameters of the baseline model unchanged. The

experiment consists of varying the travel time input, which generates a travel cost curve within

the model, such that it reflects the shift in commuting patterns induced by working from home.
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Figure 23: Results of COVID experiment in the model

Notes: “TOM” refers to (expected) time on the market. The data points are calculated using Regression (1) with
year-quarter fixed effects and property characteristics controls.

Per se, we have no information available on the change in time traveled to the city center

across space within cities. Hence, we impose restrictions on the changes that we make by using

the results from Gupta et al. (2022). To get the result that prices decrease in the city center and

increase in the outskirts compared to before, the travel cost within our model must increase

in the city center and decrease in the outskirts compared to before. A straightforward way to

implement this is to let the average travel cost of 14.17e per day stay the same while changing

its spatial distribution. Then, we must only specify one number which changes in the experiment.

We impose that, keeping the average travel time constant, the slope of the linearly approximated

travel time input curve is multiplied by some factor between 0 and 1. We add back the residuals

between the original travel time input curve and its linear approximation to the new tilted curve.

With a factor of 1/2, we approximately replicate the price decrease of 5-10% in the city center

and the price increase of 15-20% in the outskirts estimated for New York City in Gupta et

al. (2022) and our flattened liquidity gradients from Appendix D.2, see Figure 23.
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