
Phase Transition in the S&P Stock Market

Matthias Raddant

Institute for the World Economy, Kiellinie 66, 24105 Kiel and

Institut für Volkswirtschaftslehre, Universität Kiel, Germany

matthias.raddant@ifw-kiel.de

Friedrich Wagner

Institut für Theoretische Physik und Astrophysik

Leibnizstraße 15, Universität Kiel, Germany

wagner@theo-physik.uni-kiel.de

The final publication is available at link.springer.com
http://link.springer.com/article/10.1007/s11403-015-0160-x

to be published in the Journal of Economic Interaction and Coordination.

Abstract

We analyze the returns of stocks contained in the Standard & Poor’s 500 index from
1987 until 2011. We use covariance matrices of the firms’ returns determined in a
time windows of several years. We find that the eigenvector belonging to the leading
eigenvalue (the market) exhibits a phase transition. The market is in an ordered state
from 1995 to 2005 and in a disordered state after 2005. We can relate this transition
to an order parameter derived from the stocks’ beta and the trading volume. This
order parameter can also be interpreted within an agent-based model.

1 Introduction

In this paper we analyze the structure of the U.S. stock market. We show
that the influence of stocks on the market is changing and that this influence is
related to trading volume and the stocks’ betas.

The analysis of the structure of stock markets is dominated by two research
approaches. The first one tries to explain the differences between the rates of
return of stocks and relates to the seminal work by Lintner (1965) and Sharpe
(1964) and the CAPM model. The second approach takes the investor’s point
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of view, and is hence mostly focused on the choice of a portfolio and the analysis
of risk. Both are related by the need to evaluate the comovement of stocks with
each other and some index or market proxy.

The original version of the CAPM is in fact a one-factor-model, which postu-
lates that the returns ri of the stocks should be governed by the market return
rM and only differ by the an idiosyncratic component βi for each stock i, such
that

ri(t) = α(t) + βirM (t) + ǫi(t). (1)

In this setting α can also be interpreted as the risk free rate of interest. Hence,
stocks differ by the amount of volatility with respect to the market, and eco-
nomic rationale necessitates that higher stock volatility is compensated by higher
absolute returns. Empirical tests of this model had rather mixed results and
have let to the conclusion that beta values are not constant but time-varying,
see Bollerslev et al. (1988). The Fama and French (1992) model extends this
approach to a three-factor model, incorporating firm size and book-to-market
ratio. Several other extension of the original models have been suggested, mostly
building on some kind of conditional CAPM, where the entire model follows a
first-order auto-regressive process, see Bodurtha and Mark (1991). The reasons
for the change of the betas are manifold. They could change due to microe-
conomic factors, the business environment, macroeconomic factors, or due to
changes of expectations, see, e.g., Bos and Newbold (1991). Adcock et al.
(2012), Harvey and Siddique (2000) and Plerou et al. (2002) have discussed
that the non-normality of stock returns, conditional skewness, and mainly the
long memory in returns can lead to distorted estimations of the CAPM. There
is also a strand of literature that tries to capture the effects of heterogeneous
beliefs of investors in a CAPM framework, e.g., Brock and Hommes (1998) and
Chiarella et al. (2010).

In order to manage the risk of a portfolio, one can derive optimal portfolio
weights from the spectral decomposition of the covariance matrix of stock re-
turns. Many studies show that the non-normality of stock returns can lead to
an under-estimation of risk. A common way to describe the properties of stock
comovements is to look at the eigenvalue spectrum of the correlation matrix.
Random matrix theory suggests that a market that behaves like a one-factor
model should result in one dominant eigenvalue. Both, the non-normality in
the data and any influence from other factors will result in deviations from this
simplified model, see Citeau et al. (2001) and Livan et al. (2011).

Approaches which utilize the spectral properties of correlations matrices have
their limits once the number of variables becomes large relative to the number of
observations. Networks approaches, which derive dependency networks from the
correlation matrix can be useful, as long as one does not need explicit portfolio
weights for each single stock, see, e.g., Kenett et al. (2012a) and Tumminello
et al. (2005). A related approach is to try to identify different states of the
stock market, either by an analysis of the correlation matrix like in Münnix et
al. (2012), or by the analysis of transaction volumes as in Preis et al. (2011).
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Recent studies like Kenett et al. (2012b) show that the correlation structure
in stock markets are rather volatile, and partly mirror economic and political
changes. Kenett et al. (2011) for example shows that a structural break seems to
happen in the U.S. market around 2001. This strand of literature is also related
to approaches from econometrics. Beile and Candelon (2011) for example argue
that correlations increase in times of crisis, which has profound implication for
portfolio choice and hedging of risks. Other studies like Ahlgren and Antell
(2010) analyze if correlations in and between markets have increased due to
more openness and tighter economic relations between countries.

Since financial markets tend to react very fast on any change in the economy,
but also inhibit a lot of noise, we found that a look at longer time horizons
is a worthwhile contribution to the field, since many of the above mentioned
studies look at time horizons of months or a few years. We found that the S&P
500 contains around 170 stocks with a history of price quotes of 25 years (the
number drops rapidly with much more than this 25 years). We analyze the
long-run development of the stocks influence upon the market. We derive both,
a market index and the stocks’ influence, from the spectral decomposition of the
covariance matrix. We show that for most of the period under consideration the
market was in a ordered state, characterized by a disproportionate influence of
stocks from the IT sector. While some changes in the market seem to happen
in 1995, the collapse of this regime starts with the burst of the dot.com bubble.
A disordered state is found after 2005. We will show that from here the market
develops into a new (although weaker) ordered state, where the driving sector
is the financial industry.

The paper is organized in the following way. In section 2 we describe the
subset of stocks in the S&P market used in this analysis. Section 3 contains the
definition of market indices derived from the covariance matrix. In section 4
we explain why we prefer the latter over the usually applied correlation matrix,
and that the average return rav and market return rM (t) may be almost equal
when calculated from a large number of stocks. Section 5 contains our results
for the phase transition and section 6 some conclusions.

2 Materials and Methods

The most important criterion for data selection consists in the length of the
time series T of stock prices. Only 289 firms in the S&P 500 are listed from
from January 1987 until December 2011, but not all of them will qualify for our
analysis. In the present work we study the covariance matrix of firm returns. To
a large part this matrix is a random matrix, where the errors of the quantities
of interest are in the order of

√

N/T , see also Marĉenko and Pastur (1967).
Therefore one can in fact afford a reduction of N by the following criteria: We
start out with the 500 stocks which are listed as part of the S&P500 index at
the end of 2011. We drop all those which were not trading since January 1987.
We then filter for illiquid stocks; we define stocks as illiquid if their price does
not change for more than 7% of the trading days. We validate this selection by
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checking the daily trading volumes. Further we delete single stocks which price
does not move for at least 10 days in a row (e.g. due to suspended trading).

Our final set of data comprises the stock prices of N = 171 firms at T = 6312
trading days in the time window 1987-2011. As a sign of the different sizes of
the firms we will later also consider the yearly trading volume of the firms in
this period. A disadvantage of our selection consists in the loss of the meaning
of the index, since this refers to a changing set of 500 firms and may not be
representative for our subset. This selection also leads to some form of selection
bias, since failed enterprises are excluded from the analysis.

A frequently used tool to analyze financial markets consists in the study
of the correlation matrix between the stock returns of a market. This matrix
can be used in two ways. Its observation needs a certain time window tW . For
small window sizes (10-20 days in case of daily returns), the matrix is dominated
by noise and a principal component analysis does not make any sense. In the
first class of studies like Borland and Hassid (2010) and Kenett et al. (2011),
the noise is reduced by averaging the correlation matrix over the stocks. This
means to replace the volatility of the average return rav by the sum of firm
returns.

On the other side, when choosing tW in the order of a few years, the decom-
position into eigenvectors may be meaningful. The correlation matrix possesses
one large eigenvalue in the order of the number N of stocks. The corresponding
eigenvector can be used as a description of the market, see Laloux et al. (1999);
Galluccio et al. (1998). The remaining eigenvalues are qualitatively similar
to those of a random matrix with a Marĉenko and Pastur (1967) spectrum.
Nevertheless, with the assumption of a specific model, information can be ex-
tracted from this part of the spectrum, see Livan et al. (2011). In general, only
eigenvalues separated by more than

√

N/tW from other values have a model
independent meaning, see Burda et al. (2004). Therefore we concentrate on the
long term time behavior of the eigenvector of the market eigenvalue.1

A daily market return rM (t) can be obtained by the scalar product of the
stock returns with the eigenvector, determined in an appropriate window. In
this case the eigenvector denoted by βi (normalized to

∑

i β
2
i = N) describes

the β coefficients relative to the market, as needed for a CAPM portfolio in the
style of Black et al. (1972). This interpretation is supported by the empirical
results of Laloux et al. (1999), the βi are positive and and distributed around
one for tw > 3y.

In an alternative description of the market, the average return rav may be
used, see Borland and Hassid (2010) and Kenett et al. (2011). First, we investi-
gate how much rav, rM and the index return differ from each other. Secondly we
will investigate the time dependence of βi to find evidence for a phase transition.

Transitions in physics are characterized by an order parameter m, which
vanishes in the disordered phase and is non-zero in the ordered phase. m could
be related to macroscopic or microscopic properties of the system. In general, m

1 Extending the window too much could in fact at some point lead to problems, even if one
assumes that the betas are slowly varying, see for example Livan et al. (2012).
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is discontinuous at the critical point (first order). In special cases, the transition
is of continuous order with continuous m. Corresponding models of statistical
physics near the critical region have been applied to financial markets in Cont
and Bouchaud (2000); Stauffer and Sornette (1999); Bornholdt (2001). They
offer an explanation of the stylized facts of the returns, see Lux and Ausloos
(2002). However, due to the universality, the relation of the model parameters
to economical quantities remains obscure. The models require fine tuning of
the parameters to maintain the system close to the critical region. Since these
systems always stay in a disordered phase, neither a micro- nor macroeconomic
order parameter can be observed directly. In this study we look for a first order
transition of stocks that are characterized by high volatility (βi > 1) and a
high trading volume, which we capture by calculating a macroeconomic order
parameter m.

3 Correlation Matrix and Pseudo Indices

3.1 Properties of the correlation matrix

The daily stock stock prices Si(t) for stock i = 1, . . . , N at day t = 1, . . . , T may
be converted into returns ri(t) by

ri(t) = rN ln(Si(t+ 1)/Si(t)) (2)

We use a normalization factor rN given by
∑

i,t r
2
i (t) = NT . To see the time

dependence of the correlation between stocks we construct the covariance matrix
C at time τ by selecting a time window2 of size tw centered at τ

Cij(τ) =
1

tw

t=τ+tw/2
∑

t=τ−tw/2

ri(t)rj(t) (3)

Many previous investigations (as discussed in the introduction) use the Pearson
correlation (Pearson, 1885), which describes the covariance between standard-
ized returns. Subtracting from each time series the mean of ri would be a small
effect, but setting the variance to 1 may mask a possible τ dependence of the
eigenvalues of C(τ). For large window sizes C has one large eigenvalue of order
N/3 and the corresponding eigenvector has only positive components, see, e.g.,
Plerou et al. (2002). Empirically we found that these properties are lost for
window sizes less than 3 years. Therefore we will in the following use a win-
dow sizes tw = 4 years. To compensate for the loss of time resolution we use
overlapping bins by choosing time steps in τ less than tw.

The matrix C can be written in a spectral decomposition as

Cij(τ) =

N−1
∑

ν=0

eνi (τ) e
ν
j (τ)λν(τ) (4)

2 In this paper t is used to specific days, while τ is used to index variables like C that are
calculated for a time window.
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where λν denotes the eigenvalues and eνi the eigenvectors of C. The large
eigenvalue corresponding to ν = 0 and its eigenvector e0i can be interpreted as
a description of the market, see, e.g., Plerou et al. (2002). It can be used to
define a market return rM (t) for t in a window

rM (t) =
1√
N

∑

i

e0i (τ)ri(t) (5)

This means that the market return (which is also a market index) consists of
the weighted contributions of the returns of the single stocks. The weights are
proportional to the entries in the eigenvector that corresponds to the leading
eigenvalue.

For the CAPM model, one needs so-called βi-coefficients, which describe
how close a stock follows the market described by a reference return r̄.

βi =
E[ri r̄]

E[r̄2]
(6)

In a dynamic analysis the vector of beta values becomes time dependent. For
our analysis we calculate betas in time windows τ . As a reference return we
use the market return rM instead of the real S&P-index, because the latter may
not be representative for our data selection. Replacing the expectation values
in equation 6 by taking time averages we obtain with r̄ = rM from equation 4
the following βi coefficients

βi(τ) =
√
Ne0i (τ) (7)

After resolving the sign ambiguity in eνi we recover the fact that for tw ≥ 3
years all βi are positive. Due to the normalization

∑

i(e
0
i )

2 = 1 the βi(τ) are
distributed around a mean close to 1. Firms with large βi follow the market
more than others and also they influence the market more than firms with small
βi. For this reason we will refer to stocks with βi larger than a given threshold
βc as the market leaders.

3.2 The market

A simple way of defining a market would be the average return

rav(t) =
1

N

∑

i

ri(t). (8)

r2av averaged over time corresponds to a correlation matrix, averaged over the
stocks, which has also its defenders in the literature, see Borland and Hassid
(2010); Kenett et al. (2011). From the returns defined by equation (8) we can
calculate logarithms of a pseudo index Lav by the recursion

Lav(t+ 1) = Lav(t) +
rav(t)

rN
. (9)
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The market return rM (t) from equation (5) refers to a specific window. To
define a market pseudo index LM we use r̄M (t) which is defined for all t by
equation (5) with e0i (τ) of the window with center τ next to t.

LM (t+ 1) = LM (t) +
r̄M (t)

rN
. (10)

The recursions (9) and (10) can be integrated. The integration constants are
fixed by the normalization

∑

t

Lav(t) =
∑

t

LM (t) = 0 (11)

We compare these pseudo indices in figure 1 with the index S0(t), written in the
form L0(t) = lnS0(t) − l0. l0 ensures equation (11) also for L0. As expected,
the market index LM calculated with a time window of tw = 4 years agrees
with L0 only qualitatively. The average pseudo index Lav(t) is very similar to
the market pseudo index LM . This is somewhat surprising since we will see

that e
(0)
i (τ) can change with time. Especially in the years 2001-2008 the index

exhibits considerably larger average returns than the pseudo indices. This effect
can be interpreted as phase transition into a stiff market. It was detected in
Kenett et al. (2011), where correlations with the index have been subtracted
from the stock correlations. An increase of the former correlation leads to
smaller subtracted correlations after 2001. For the squared difference ∆2 of rM
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Fig. 1: S&P500 index (grey), and pseudo indices. Lav (solid) and LM (dotted)
are very similar. They show changing deviations from the real S&P
index.

and rav given by

∆2(τ) =





τ+tw/2
∑

t=τ−tw/2

(rM (t)− rav(t))
2









τ+tw/2
∑

t=τ−tw/2

r2M (t)





−1

(12)



4 Dependence on the Market Size 8

we derive in appendix A the inequality

∆2(τ) ≤ (1− β̄)(
2

λ0
· trace(C) − 1− β̄) (13)

with β̄ the mean of βi. The average correlation Cav

Cav =
1

N(N − 1)

∑

i6=j

Cij (14)

can be expressed by ∆2 and the properties of the market component (see ap-
pendix A) up to terms of order 1/N

Cav =< r2M > (∆2 + 2β̄ − 1)− 1

N
(15)

In the next section we discuss that for large markets (N → ∞) both, empir-
ically and in context of a model, β̄ approaches one and therefore ∆2 vanishes.
In this limit Cav corresponds to the volatility < r2M > of the market.

4 Dependence on the Market Size

The qualitative behavior of the correlation matrix suggests a decomposition of
the returns ri according to a stochastic volatility model, see Cont (2001). ri(t)
is the sum of the two products, of noise η and the market and of noise and the
remaining contribution. The coefficients β, the coupling γM to the market, and
the idiosyncratic couplings γi are assumed to be constant in each window.

ri(t) = β0
i γM · ηm + γi · ηi (16)

The independent noise factors η have mean 0 and variance 1. The coefficients
β0
i are normalized to

∑

i(β
0
i )

2 = N . For tw → ∞ C can be determined from
the expectation values

Cij = β0
i β

0
j γ

2
M + δij γ

2
i (17)

For large N one can solve the eigenvalue problem for C by a 1/N expansion
(see appendix B). C has one large eigenvalue

λ0 = Nγ2
M + 〈γ2〉β + (〈γ4〉β − 〈γ2〉2β)/(Nγ2

M ) (18)

with an eigenvector corresponding to

βi =
[

1 + (γ2
i − 〈γ2〉β)/(Nγ2

M )
]

β0
i (19)

〈a〉β denotes an average over ai(β
0
i )

2.
Neglected terms in equations (18) and (19) are of order 1/N2. Empirically

the βi are distributed around a mean β̄ close to 1 and a variance σβ decreasing
with N . Therefor, we can assume the model parameter β0

i to be equal to one.
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Fig. 2: The solid line shows the squared difference between market and average
return as ln(∆2(N)) as function of lnN (left hand scale). The dashed
dotted line gives ln(λ0) as function of lnN (right hand scale) and the
dashed line the variance of the distribution of βi on a logarithmic scale.

From the inequality (13) we see that the difference between rM and rav expressed
by ∆2 (see equation (12)) has to vanish in this limit.

In the following we investigate the behavior of the leading eigenvalue λ0 ∝ N ,
σβ ∝ N−γ1 and ∆2 ∝ N−γ2 as function of N .

A finite window size tw leads to deviations of the observed C from the ideal
C of equation (17) in the order of

√

N/tw. To minimize this systematic error,
we choose the maximum window size tw = T . To have a varying N we adopt the
following procedure: Sub-markets are defined by dividing the N0 stocks into k
groups with size N(k) = N0/k such that each group contains the same fraction
of large and small firms as the full set. To improve the statistics we average λ0,
∆2 and σ2

γ over the groups. The result is presented in figure 2, which shows
these quantities as a function of N(k) on a log-log scale. λ0 (dashed dotted
line) increases with Nα with a power of α close to 1. ∆2(N) (solid line) and
σγ(N) (dashed line) exhibit a lesser decrease than the expected 1/N behavior.
Since they also flatten out at large N , this indicates an influence of the finite
observation time window. The observed values of ∆2 are much smaller than
the upper limit from the Schwartz inequality in equation (13). This indicates
that the eigenvectors eνi for ν > 0 are almost orthogonal to a constant vector
ei = 1/

√
N already at finite N , which implies equality of rM and rav.

To summarize, the data support a stochastic volatility model of a sum of



5 Time Dependence of βi and Phase Transition 10

market and preferences γi for individual stocks where for large N the stock re-
turns couple to the market component in the same way. Therefore rav can be
taken as a description of the market. Since it determines the average correla-
tion Cav, the frequent use of Cav in the literature as a proxy for an index is
empirically successful. Especially r2av consists in a good estimator for the lead-
ing eigenvalue

√

λ0)/N , since due to the law of large numbers the statistical

error decreases with both,
√
N and

√
T . From the perturbation expansion given

in appendix B we see that the leading eigenvalue and its vector can be more
accurately determined than the remaining ones.

5 Time Dependence of βi and Phase Transition

In the previous section the coefficients γ and β have been discussed for a long
time scale. In general however, they will be time dependent. To minimize the
influence of the noise produced by a finite observation window tw, we chose a
rather large window of tw = 4 years. This implies that only long term changes
in βi can be detected. In the following, we diagonalize C for the S&P data in
overlapping steps of 1 year.

Fig. 3: Time dependence of βi(τ) for
the 60 firms with smallest trad-
ing volume. Solid lines indi-
cate market leaders (βi > 1.3)
in 2008.

Fig. 4: Time dependence of βi(τ) for
the 60 firms with largest trad-
ing volume. Solid lines indi-
cate market leaders (βi > 1.3)
in 2002.

The resulting time dependence of βi(τ) is shown in figure 3 for the 60 firms
with the smallest average traded volume. Before 2005, their beta values are
relatively constant with values ≤ 1, as expected for small firms with less impact
on the market. Around 2005 some firms with previously small β experience
a drastic increase and become market leaders (firms with βi(2008) > 1.3 are
indicated by solid lines). A different picture appears if we look at βi(τ) for
firms with large average traded volume shown in figure 4 for the 60 largest
firms. Of course this set contains market leaders. Those in 2002 are denoted by
solid lines. However, in 2005 they disappear in favor of new firms as in the case
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Sector name # in sample Sector name # in sample
Consumer Discretionary 24 Consumer Staples 22

Energy 10 Financials 28
Health Care 18 Industrials 33

IT 20 Materials 14
Telecommunication Services 3 Utilities 0

Tab. 1: List of S&P sectors and frequency in the data set, GICS classification

of small firms. Therefore in 2005 a reorganization of the market has happened.
This depends on the the sector classification of the firms. The 18 market leaders
in the set of all firms with βi > 1.39 in the year 2002 are listed in table 2 and in
table 3 those for the year 2008. The 2002 list contains dominantly large firms
from the IT sector. After the transition in 2008 the list contains firms of all
sizes spread over many sectors.

This behavior of βi might indicate a phase transition. A macroeconomic
order parameter that explains this transition should take into account the (large)
βi values, the traded volume (see also (Dichev et al., 2012)) and the sectors s
of the firms. For s we use the GICS classification scheme into S = 10 sectors
given in table 1. From the point of view of an investor, one can say that the
following function R describes the risk (volatility) in each sector s due to the β
coefficients

R(τ, s) =
∑

iǫs

θ(βi − 1.0)βi(τ) vi(τ) (20)

In an ordered state one specific R(τ, s0) is large and the remaining R’s are small.
A macroeconomic order parameter m of a Potts model type can be obtained by
normalizing R

m(τ, s0) =
S

S − 1

[

R(τ, s0)
∑

s′ R(τ, s′)
− 1

S

]

(21)

If the appearance of one large R is due to a transition to an ordered state,
m(τ, s0) will be close to 1 and the ’wrong’ order parameters m for s 6= s0 will
scatter around small negative values due to the analogue of thermal fluctuations.
In the disordered phase all m will fluctuate around 0. In figure 5 we show the
order parameters m(τ, s) in time steps of one year. Clearly m is large for the
IT sector, whereas all others are small negative. After 2006 m(τ, IT ) decreases.
Near the end of our time series an ordering towards the financial sector may be
possible. 3 Following the advice of an unknown referee we discuss in appendix
C that the effect seen in figure 5 is not due to the change of only a few firms.

There are different possibilities to relate this phase transition to the behavior
of agents that trade in this market. A microeconomic order parameter could
be obtained by incorporating a behavioral agent-based model for the market of

3 The dominance of the IT sector and the change around 2005 can also be found for smaller
window sizes of down to 2 years, revealing one sharp peak around 1995/96. For much smaller
time windows the influence of single events like the 1987 stock market crash or the 9/11
attacks become rather large and distort long-run trends.
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Firm Sector β Vol. Firm Sector β Vol.
TEXAS I. IT 2.21 2966 HALLIBURTON Energy 2.09 2641
ALTRIA Cons. S. 2.04 8927 BANK OF A. Finance 1.94 3254

HEWLETT-P. IT 1.89 2883 MICROSOFT IT 1.87 19418
APPLIED M. IT 1.69 6735 AM. EXP. Finance 1.69 1478
ORACLE IT 1.66 11797 INTEL IT 1.66 14429
PFIZER Health 1.54 4272 ADOBE IT 1.53 1886
LOWE’S Cons. D. 1.51 2511 JOHNSON & J. Health 1.50 2079

HERSHEY Cons. S. 1.44 422 MERCK Health 1.40 1884
APPLE IT 1.39 18540 INTERN.BUS. Industry 1.39 2347

Tab. 2: List of market leaders with β(2002) ≥ 1.39. V ol. gives the annual stock
trading volume in millions of shares.

Firm Sector β Vol. Firm Sector β Vol.
HUMANA Health 2.11 828 INTERN.BUS. Industry 1.86 2379
WEYERH. Finance 1.86 1623 CHUBB Finance 1.80 914
VARIAN Health 1.64 367 TEXTRON Industry 1.63 873

CHEVRON Energy 1.63 3923 DONNELLEY Industry 1.60 412
A. DATA Industry 1.55 823 TARGET Cons. D. 1.51 3191
LOWE’S Cons. D. 1.46 3893 C R BARD Health 1.45 211
AVON Cons. S. 1.45 1098 MICROSOFT IT 1.44 21314

G. PARTS Cons. D. 1.44 309 PROG. OHIO Finance 1.41 1461
CIGNA Health 1.39 918 WASH. PST. Cons. D. 1.39 8

Tab. 3: List of market leaders with β(2008) ≥ 1.39. V ol. gives the annual stock
turnover in millions of shares.
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Fig. 5: The order parameters m(τ, s0) for all sectors s0 as function of the center
τ of the windows with size tW = 4. In the years 1992-2005 m is large
for the IT sector and small for the remaining sectors. Around 2010 the
financial sector may give rise to an ordering.

the Kirman (1993) type. The sector specific returns could be defined as

rs(t) = θs(τ) · ηs(t), (22)

like in Alfarano et al. (2005) or Wagner (2006). θs is proportional to the ratio of
noise traders and fundamentalist agents that trade stocks in sector s. The i.i.d.
Gaussian noise ηs describes the noise traders. θs is (on a longer time scale) time
dependent, because the opinion of the agents changes. With suitable choice of
the parameters in the asymmetric Kirman model (see Alfarano et al. (2005)
using the bimodal version) this ratio can occasionally be large, and the system
stays in this state for longer times. Such a situation cannot be distinguished
empirically from a real phase transition. A microeconomic order parameter
related to the herding effect would then be given by

m(τ, s) =
θs(τ)

1 + θs(τ)
(23)

An alternative model is the application of a Pott’s model with S states,
see Wu (1982). The β dependent interaction between agents is attractive if
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neighboring agents trade in the same sector. For strong enough dependent
interactions the system will order, with one sector dominating the others.

6 Conclusions

Our analysis of the market indices revealed that for a sufficiently large samples
of stocks and longer time horizons weighted indices differ only very slightly from
any form of market average. This is a result of strong overall stock correlations
and relatively stable long-run correlation structures that we have shown by the
analysis of the properties of the correlations matrix.

In our analysis of how the market is influenced by different stocks in the
long-run, we have seen that the IT sector has played a dominant role for a long
time. The time dependence of the CAPM coefficients β exhibit a transition
in 2005. This is connected with the disappearance of a macroeconomic order
parameter for the IT sector. Despite our poor time resolution due to the window
size, this phase transition appears to be sharp. The transition lies between the
crash of the dot.com bubble and the Lehmann desaster in 2008. In this time
period we see no other pronounced effect in the index or in the stock prices.

A possible reason for a sharp transition may be the following: From 1990 to
2002 the stock prices experienced a steady increase. This led investors to buy in
the most increasing sector, the IT sector. They minimized the risk by choosing
only large firms. Disappointed by the crash of the dot.com bubble in 2001, they
changed their investment strategy completely. Investments and trading volume
became much more scattered over all segments. Figure 5 shows that later a
(weaker) form of ordering took place by focusing on the financial sector.

Appendix

A Correlation Matrix

Denoting the time average as in equation (3) by [ ]τ,tW we get from equations
(4) and (5) the average of r2M

[r2M ]τ,tW =
λ0(τ)

N
(24)

Similarity we get for [r2av]τ,tW and [rM · rav]τ,tW

[r2av]τ,tW =
1

N

N−1
∑

µ=0

a2µ(τ)λµ(τ) (25)

with

aµ(τ) =
1√
N

∑

i

eµi (τ) (26)
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a0 corresponds to the mean value β̄ of βi over i.

[rM · rav]τ,tW =
λ0(τ)

N
· β̄ (27)

Inserting equations (24), (25) and (27) into ∆2 from (4) we get

∆2 = (1− β̄)2 +
∑

µ>0

λµ(τ)

λ0(τ)
a2µ(τ) (28)

Since eµi and e0i are orthogonal for µ > 0 we can write aµ as

aµ(τ) =
1√
N

∑

i

eµi (1−
√
Ne0i ) (29)

Applying the Schwartz inequality to (29) we get

a2µ(τ) ≤ 2(1− β̄) (30)

Together with
∑

µ=0 λµ = trace(C) this leads to the inequality (13) for ∆2.

Since the average Cav is a function [r2av]t insertion of ∆2 into equation (25)
leads to equation (15).

B Perturbation Expansion

The matrix C in equation (17) is a sum of two matrices. The first C0
ij = β0

i β
0
j γ

2
M

has one large eigenvalue E0 = γ2
MN with an eigenvector f0

i = β0
i /

√
N and N−1

degenerate zero eigenvalues with vectors fµ
i with µ > 0.These must satisfy only

the orthogonality relation
(f0, fµ) = 0 (31)

with (a, b) denoting the scalar product. To obtain a complete basis we impose on
fµ in the N − 1 dimensional subspace the following conditions with the second
matrix C1

ij = δijγ
2
i

(fν , C1 fµ) = 0 for µ 6= ν and µ, ν 6= 0 (32)

We apply standard second order Rayleigh Schrödinger perturbation theory 4

with C1 as perturbation. For general matrices C0 and C1 using only the spec-
trum of C0 and condition (31) we get up to order 1/E2

0 for the leading eigenvalue

λ0 = E0 + (f0, C1f0) +
1

E0
[(f0, (C1)2f0)− (f0, C1f0)2] (33)

and its eigenvector

e0i = f0
i +

1

E0
[(C1f0)i − (f0, C1f0)f0

i ] (34)

4 See any textbook on quantum mechanics, e.g., Messiah (1967).
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The other eigenvalues require the in general complicated solution of equation
(17) for fµ

j . They are given by

λν = (fν , C1 fν)− 1

E0
(f0, C1fν)2 (35)

Inserting the specific form of C1 we obtain for λ0 and βi with

(f0, C1f0) =
1

N

∑

i

(β0
i )

2γ2
i = 〈γ2〉β (36)

(f0, (C1)2f0) =
1

N

∑

i

(β0
i )

4γ2
i = 〈γ4〉β (37)

λ0 = γ2
MN + 〈γ2〉β +

1

γ2
MN

[

〈γ4〉β − (〈γ2〉β)2
]

(38)

βi = β0
i

(

1 +
1

γ2
MN

(

γ2
i − 〈γ2〉

)

)

(39)

〈 〉β denotes the average over i weighted with (β0
i )

2. Since neglected terms
are of order 1/N2 these formulae describe λ0 and βi fairly accurate already
for moderate N . Due to the degeneracy the general formalism of Marĉenko
and Pastur (1967) for the modification due to noise does not apply. Using the
Wishart (1928) formula we find the relative error in λ0 due to a finite observation
window T is of order 1/

√
T instead of

√

N/T expected from Marĉenko and
Pastur (1967) . The non-leading eigenvalue will be changed considerably if the
spread of γi is small, see Burda et al. (2004).

C Significance of the order parameter

We analyzed the significance of the order parameter by assigning a random
value for the sector to each stock. In figure 6 we show one representative result
of such a random assignment. Compared with figure 5, the large values of m
disappear. Before and after 2006 m behaves similar as in a disordered phase.
The structure observed near 2006 cannot be removed by re-shuffling, because
a substantial part of the stocks change their values of βivi. If there would be
only one stock in each IT or financial sector responsible for the transition seen
in figure 5, one would get the same behavior. The fluctuation size of m in the
order of ±0.15 indicates the error on the estimation of m. This shows that the
observed values for the IT and financial sector are far out of the range of random
fluctuations.
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Fig. 6: The risk parameter m(τ, s) with the same βi and vi as in eq. (20) but
for shuffled sector affiliations s.
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Münnix MC, Shimada T, Schäfer R, Leyvraz F, Seligman T, Guhr T, Stanley
HE (2012) Identifying States of a Financial Market. Scientific Reports 2(644).

Pearson K (1885) Notes on regression and inheritance in the case of two parents,
Proceedings of the Royal Society of London 58 240:242.

Plerou V et al. (2002) Random matrix approach to cross correlations in financial
data, Physical Review E 65, 066126.

Preis T, Schneider JJ, Stanley HE (2011) Switching processes in fi-
nancial markets. Proceedings of the National Academy of Sciences
doi:10.1073/pnas.1019484108.

Sharpe W (1964) Capital Asset Prices: a Theory of Market Equilibrium Under
Conditions of Risk. Journal of Finance 19, 425–442.

Stauffer D, Sornette D (1999) Self-organized percolation model for stock market
fluctuation. Physica A 271 496-506.

Tumminello M, Aste T, Di Matteo T, Mantegna RN (2005) A tool for filtering
information in complex systems. Proceedings of the National Academy of
Sciences of the United States of America 102(30):10421-10426.

Wagner F (2006) Application of Zhangs square root law and herding to financial
markets. Physica A 364 369-384.

Wishart J (1928) The generalized product moment distribution in samples from
a normal multivariate population. Biometrica 20A(1928), 32-52.

Wu FY (1982) The Potts model. Rev.Mod.Phys.54(1):235268.


