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A Solution of the NT model

This appendix provides details on solving the NT model in Weber (2011b). The nonlinear

equilibrium conditions of the NT model are the equations (1), (2), (5), (6), (7), (9), firms’

technology, the market clearing conditions, the consolidated budget constraint, and a speci-

fication of monetary policy. Moreover, the analyst knows the aggregate price level (11) and

aggregate output Yt = n (PNt/Pt)CNt + (1− n) (PTt/Pt)CTt.

A.1 Symmetric flexible-price steady state

This appendix derives the symmetric steady state with flexible prices. The pricing equation

(9) implies that, with flexible prices, all product prices are equal to the optimal price P ?.

This optimal price is equal to a constant markup over marginal costs, which are the same for

all firms.

Symmetric price levels: Imposing PN = PT on the definitions of the price levels (1) and

using the fact that product prices equal P ? determines the scalar Γ such that it normalizes

the mass of products in CN to unity:

Γ =

∫
Jt

γsjtdj .

To solve this integral recall that the mass of new products with age sjt equal to unity is δ at

each date t. The N household consumes a fraction γ of these products. Therefore, the mass

of new products that N consumes is δγ. The mass of products with age equal to two that

N consumes is δ(1 − δ)γ2. This term accounts for the initial mass of the cohort, the death

shock, and the fact that N only keeps γ of the products it consumed in the previous period.

More generally, N consumes δ(1− δ)zγz+1 of the products with age z+ 1 at time t. Summing

over all entry cohorts z = 0, . . .∞ delivers Γ =
∑∞

z=0 δ(1− δ)zγz+1 or Γ = δγ/(1− (1− δ)γ).

By construction, this value of Γ also normalizes the mass of products in CT to unity.

Symmetric consumption levels: With PN = PT , equation (7) is uC(CN , ξ) = uC(CT , ξ)

and implies CN = CT . The remaining equilibrium conditions yield:

uC(CT , ξ) =
θ − 1

θ(1− τL)

hL(L)

A
, AL = nCN + (1− n)CT .
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Imposing explicit functional forms for u and h yields consumption and labor in steady state.

Constant firm-specific output: In general, while aggregate variables are constant, firm-

specific output Ȳjt varies over time in the symmetric steady state:

Ȳjt
CT

= γsjt
(n

Γ

)
+ (1− γsjt)

(
1− n
1− Γ

)
.

Over the lifetime of firm j, demand shifts from the N household to the T household. If both

households demand different amounts then firm-specific steady-state output varies over time.

To prevent this, I set the relative population mass n of households equal to Γ which yields

Ȳjt = CT . Furthermore, with n equal to Γ, the flexible-price symmetric steady state coincides

with the sticky-price symmetric steady state with zero aggregate inflation (SZISS), and this

coincidence simplifies the welfare analysis below.

A.2 Linearized equilibrium conditions

This appendix calculates the equilibrium conditions of the NT model accurate to the first

order and at the SZISS and yields the linearized NT model of Proposition 1.

Pricing equation: Calculated to the first order and denoting at = Ât, the pricing equation

(9) implies that all adjusting firms set the same optimal price:

P̂ ?t − P̂t = (1− κβ)(Ŵt − P̂t − at) + κβEt[P̂
?
t+1 − P̂t+1 + π̂t+1] .

Aggregate price level: Calculated to the first order, the aggregate price level Pt in equa-

tion (11) equals P̂t =
∫ 1

0 P̂jt dj. The price level integrates prices over the unit mass that is

composed of infinitely many entry cohorts. Each cohort has mass δ in the entry period but

diminishes over time by firm exit: 1 = δ
∑∞

z=0(1− δ)z.

Consider the average price of the cohort that entered z ≥ 0 periods ago at time t− z, and

normalize the mass of this cohort to unity. At time t and calculated to the first order, this

price is determined by a truncated geometric distribution:

Λ̂t(z) =


(1− α)

∑z−1
k=0 α

kP̂ ?t−k + αzP̂ ?t−z if z ≥ 1 ,

P̂ ?t if z = 0 .

(A.1)

4



Now weight the average price Λ̂t(z) by the mass of the t − z cohort at time t and sum over

all cohorts to obtain the aggregate price level:

P̂t = δ

∞∑
z=0

(1− δ)zΛ̂t(z) . (A.2)

Simplifying this expression yields the recursive law of motion: P̂t = (1− κ)P̂ ?t + κP̂Nt.

Pricing equation and aggregate price level: Combine the pricing equation and the

recursive law of motion of the aggregate price level to obtain:

π̂t = [(1− κβ)(1− κ)/κ](Ŵt − P̂t − at) + βEtπ̂t+1 . (A.3)

Marginal costs and output: Calculated to the first order and by using gt = −ξ̂t, the

household optimality conditions (6) and (7) yield:

Ŵt − P̂Tt = νL̂t + (ĈTt − gt) , P̂Nt − P̂Tt = (ĈTt − gt)− (ĈNt − gt) .

Use the definition of the aggregate price level P̂t = ΓP̂Nt+(1−Γ)P̂Tt and the one of aggregate

output Ŷt = ΓĈNt + (1 − Γ)ĈTt calculated to the first order, and rearrange the optimality

conditions according to:

Ŵt − P̂t = νL̂t + (Ŷt − gt)

In order to replace aggregate labor by aggregate output, combine labor market clearing, firms’

technology, and households’ demand functions to the aggregate technology:

AtLt = CNt

∫ 1

0
γsjt

(
Pjt
PNt

)−θ
dj + CTt

∫ 1

0
(1− γsjt)

(
Pjt
PTt

)−θ
dj .

Calculate it to the first order and exploit the definition of aggregate output to obtain that

at+L̂t = Ŷt. The relative price terms in the aggregate technology are zero to the first order by

the equations (1). Combine aggregate technology and the real wage to obtain real marginal

costs:

Ŵt − P̂t − at = (1 + ν)Ŷt − gt − (1 + ν)at .
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New Keynesian Phillips curve: Combine real marginal costs with the equation (A.3)

to obtain the NKPC:

π̂t = βEtπ̂t+1 + [(1− κβ)(1− κ)/κ](1 + ν)xt . (A.4)

Here, the output gap is xt = Ŷt − Ŷ na
t and Ŷ na

t = 1
1+ν gt + at is the natural level of output in

the flexible-price economy absent ut shocks. The natural level of output is obtained by going

through analog steps in the NT model with flexible prices. Equation (A.4) corresponds to

the first equation in (12) in the main text.

Aggregate IS relation: Combine household optimality conditions (5) and (7) with the

condition (1 + it)
−1 = βEtΩt,t+1 to obtain:

(1 + it)
−1 = βEt

uc(CNt+1, ξt+1)

uc(CNt, ξt)

PNt
PNt+1

, (1 + it)
−1 = βEt

uc(CTt+1, ξt+1)

uc(CTt, ξt)

PTt
PTt+1

.

Calculate these conditions to the first order and use the definitions of aggregate output and

aggregate inflation to obtain:

Ŷt − gt = Et(Ŷt+1 − gt+1)− (̂it − Etπ̂t+1) .

Obtain by analog steps in the flexible-price model that Ŷ na
t − gt = Et(Ŷ

na
t+1 − gt+1) − r̂nat .

Subtract the flexible-price equation from the sticky-price equation to obtain:

xt = Etxt+1 − (̂it − Etπ̂t+1 − r̂nat ) . (A.5)

The natural real rate r̂nat = −Et(1 − L−1)(at − ν
1+ν gt) is the flexible-price real interest rate

absent ut shocks. Equation (A.5) corresponds to the second equation in (12) in the main text.

A.3 N inflation and T inflation

This appendix derives the mapping between aggregate inflation and N inflation or T inflation

in Proposition 2.

N inflation: Calculated to the first order, PNt in equations (1) is:

P̂Nt = Γ−1

∫
Jt

γsjtP̂jt dj .
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This price level integrates prices over the unit mass that is composed of infinitely many

entry cohorts. Each cohort has mass δ in the entry period but diminishes over time by

firm exit. Moreover, only the fraction γ of the total demand for the products in a new

cohort comes from N households. Accordingly, express the unit mass of prices in P̂Nt as

1 = Γ−1δγ
∑∞

z=0[(1− δ)γ]z.

Along the lines of the derivation for aggregate price level in Appendix A.2, the price level

P̂Nt can thus be rearranged as:

P̂Nt = Γ−1δγ
∞∑
z=0

[(1− δ)γ]zΛ̂t(z) , (A.6)

Λ̂t(z) denotes the average price of the t− z cohort at time t that is defined in equation (A.1).

Simplify the N price level as P̂Nt = (1−κγ)P̂ ?t +κγP̂Nt−1 and rewrite it in terms of inflation

rates as π̂Nt = (1−κγ)π̂?t +κγπ̂Nt−1, with π̂?t = P̂ ?t − P̂ ?t−1. Recall the recursive law of motion

P̂t = (1− κ)P̂ ?t + κP̂t−1 derived in Appendix A.2 and rewrite it in terms of inflation rates as

π̂t = (1− κ)π̂?t + κπ̂t−1. Substitute for π̂?t by the equation π̂Nt = (1− κγ)π̂?t + κγπ̂Nt−1. This

delivers the mapping between π̂Nt and π̂t in Proposition 2.

T inflation: To map π̂Tt and π̂t, rearrange the equation for π̂Nt in Proposition 2 as:

π̂Nt =
1− κγ
1− κ

(
1− κL

1− κγL

)
π̂t .

Substitute it for π̂Nt in the definition π̂t = Γπ̂Nt+(1−Γ)π̂Tt and simplify the result to obtain:

(1− Γ)π̂Tt = π̂t − Γ

(
1− κγ
1− κ

)(
1− κL

1− κγL

)
π̂t .

Multiply through by (1− κγL) and simplify the coefficients to obtain the mapping between

π̂Tt and π̂t in Proposition 2.

B Product replacement bias

This appendix derives the PRB in Proposition 3 in three steps. First, calculate the measured

price levels at the SZISS accurate to the first order. Second, compute measured inflation and

expresses it as a lag polynomial of aggregate inflation. Third, expresse PRB in measured

inflation as a function of aggregate inflation. Finally, this appendix also derives the PRB in
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the measured price level in Proposition 5.

B.1 Measured price levels

Calculated to the first order, the measured price levels in equations (10) are equal to:

P̂mt,t−1/Q =

∫
Nt−1

P̂jt dj , P̂mt−1,t−1/Q =

∫
Nt−1

P̂jt−1 dj .

Let weights Qj be the same for all products and equal to Q since products are consumed

in equal amounts in the SZISS. The scalar Q normalizes the mass of products in the basket

Nt−1 to unity and is determined below.

Measured price levels as infinite sums: Consider the measured price level P̂mt,t−1 first.

At time t − 1, the SB samples (1 − γ) of the δ new products. Account for the discontinued

products to obtain that a mass δ(1− δ)(1− γ) of the products that were new at time t− 1 is

contained in the Nt−1 basket. Similarly, a mass δ(1− δ)2(1− γ)(1 + γ) of the products that

were new at time t− 2 is contained in the Nt−1 basket. That is, (1−γ) products are sampled

at time t − 2, (1 − γ) of the γ remaining products are sampled in t − 1, and all subsamples

are subject to equal mortality risk. More generally, a mass δ(1− δ)z(1− γz) of the products

that belongs to the t− z cohort is contained in Nt−1.

Along the lines of the derivation for aggregate price level in Appendix A.2, the measured

price level P̂mt,t−1 can thus be rearranged as:

P̂mt,t−1/Q =
∞∑
z=1

δ(1− δ)z(1− γz)Λ̂t(z) . (B.1)

Λ̂t(z) denotes the average price of the t− z cohort at time t defined in equation (A.1).

Now consider the measured price level P̂mt−1,t−1. This price level refers to the same basket

as P̂mt,t−1. However, the average price of a particular entry cohort differs from P̂mt,t−1 because

the price distribution of any cohort is less fanned out at time t− 1 than at time t. Obtain:

P̂mt−1,t−1/Q =
∞∑
z=1

δ(1− δ)z(1− γz)Λ̂t−1(z − 1) . (B.2)

Normalize the mass of products in measured price levels as Q−1 =
∑∞

z=1 δ(1− δ)z(1− γz) or

Q−1 = (1− γ)(1− δ)/(1− (1− δ)γ).
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Measured price levels in terms of N and T price levels: Rearrange the measured

price level in equation (B.1) according to:

P̂mt,t−1/Q = δ

∞∑
z=0

(1− δ)zΛ̂t(z)− δ
∞∑
z=0

[(1− δ)γ]zΛ̂t(z) .

Substitute for the infinite sums by P̂t in equation (A.2) and P̂Nt in equation (A.6), respec-

tively. Employ the definition of the aggregate price level and simplify coefficients to obtain:

P̂mt,t−1 =
1

1− δ P̂Tt −
δ

1− δ P̂Nt .

Rearrange the measured price level in equation (B.2) according to:

P̂mt−1,t−1/Q = δ(1− δ)
∞∑
z=0

(1− δ)zΛ̂t−1(z)− δγ(1− δ)
∞∑
z=0

[(1− δ)γ]zΛ̂t−1(z) .

Simplify it along similar lines as for P̂mt,t−1 to obtain:

P̂mt−1,t−1 = P̂Tt−1 .

B.2 Measured inflation and aggregate inflation

Calculate the definition of measured inflation to the first order as π̂mt = P̂mt,t−1− P̂mt−1,t−1 and

substitute for measured price levels expressed in terms of the N and T price level to obtain:

π̂mt =
1

1− δ π̂Tt −
δ

1− δ (P̂Nt − P̂Tt−1) . (B.3)

In the next couple of steps, replace the relative price P̂Nt − P̂Tt−1 by the inflation rates π̂Nt

and π̂t. Start by employing the definition of the aggregate price level rearranged according

to PTt−1 = 1
1−ΓPt−1 − Γ

1−ΓPNt−1 and obtain:

P̂Nt − P̂Tt−1 =
1

1− Γ
(P̂Nt − P̂t−1)− Γ

1− Γ
πNt . (B.4)

Rewrite the relative price P̂Nt − P̂t−1 on the right-hand side in terms of inflation rates by

subtracting P̂t−1 from the recursive law of motion of P̂Nt:

P̂Nt − P̂t−1 = (1− κγ)(P̂ ?t − P̂t−1) + κγ(P̂Nt−1 − P̂t−1) .
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The recursive law of motion of P̂t implies P̂ ?t − P̂t−1 = (1− κ)−1π̂t. Employ this to obtain:

P̂Nt − P̂t−1 =
1− κγ
1− κ π̂t + κγ(P̂Nt−1 − P̂t−1) .

Rewrite the relative price PNt−1 − P̂t−1 on the right-hand side in terms of inflation rates by

subtracting the recursive law of motion of Pt from the recursive law of motion of P̂Nt:

P̂Nt − P̂t =
κ(1− γ)

1− κ
π̂t

1− κγL . (B.5)

Substitute this expression lagged once for P̂Nt−1 − P̂t−1 into P̂Nt − P̂t−1 to obtain:

P̂Nt − P̂t−1 =
1− κγ
1− κ π̂t + κγ

κ(1− γ)

1− κ
π̂t−1

1− κγL .

Substitute this expression for P̂Nt − P̂t−1 into P̂Nt − P̂Tt−1 to obtain:

P̂Nt − P̂Tt−1 =
1

1− Γ

(
1− κγ
1− κ π̂t + κγ

κ(1− γ)

1− κ
π̂t−1

1− κγL

)
− Γ

1− Γ
πNt .

Substitute this expression for P̂Nt − P̂Tt−1 into measured inflation to obtain:

π̂mt =
1

1− δ π̂Tt −
δ

1− δ

(
1

1− Γ

1− κγ
1− κ π̂t +

1

1− Γ
κγ
κ(1− γ)

1− κ
π̂t−1

1− κγL −
Γ

1− Γ
πNt

)
.

Employ the definition of aggregate inflation π̂Tt = 1
1−Γ π̂t − Γ

1−Γ π̂Nt to substitute for T

inflation. Employ the equation πNt = 1−κγ
1−κ

1−κL
1−κγL π̂t derived in Appendix A.3 to substitute for

N inflation. This yields that measured inflation is a lag polynomial of aggregate inflation:

π̂mt =

(
1− α
1− κ

)(
1− (1− δ)κγL

1− κγL

)
π̂t .

Rearranging this lag polynomial of aggregate inflation yields π̂mt = a(L)π̂t. The lag polynomial

a(L) is the one defined in Proposition 3.

B.3 Product replacement bias in measured inflation

Calculate the definition of the bias Bt = πmt /πt to the first order and substitute for measured

inflation by using π̂mt = a(L)π̂t to obtain the product replacement bias B̂t as the lag polyno-

mial of aggregate inflation in Proposition 3.
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The properties of a(L) are derived as follows. The polynomial a(L) is invertible if all

coefficients are positive and if their sum is finite, a(1) < ∞. The definition of a(L) readily

implies that all coefficients are positive. To show a(1) < ∞, replace L by unity in a(L) and

simplify. Obtain:

a(1) =

(
1− α

1− α(1− δ)

)(
1− α(1− δ)2γ

1− α(1− δ)γ

)
<∞ .

To show that a(1) = 1 for α = 0, δ = 0 or both, plug these parameter values into a(1)

and simplify. To show that the sum of the coefficients fulfills the inequality a(1) < 1 for the

admissible parameter values, impose this inequality on a(1) and simplify. For the inequality

to be fulfilled the condition γ < 1
1−δ must hold, and this condition holds for all admissible

parameter values.

B.4 Product replacement bias in the measured price level

This appendix derives the PRB in the measured price level in Proposition 5. Employ the

definition of the aggregate price level P̂t = (1 − Γ)P̂Tt + ΓP̂Nt and subtract from it the

measured price level P̂mt,t−1 = 1
1−δ P̂Tt − δ

1−δ P̂Nt derived in Appendix B.1 to obtain:

P̂t − P̂mt,t−1 =

(
1− Γ− 1

1− δ

)
(P̂Tt − P̂Nt) .

The definition of P̂t further implies P̂Tt − P̂Nt = 1
1−Γ(P̂t − P̂Nt). Combine this with equation

(B.5) and simplify the coefficients to obtain:

P̂t − P̂mt,t−1 =
δ

1− δ
κ

1− κ
π̂t

1− κγL .

Rearrange the lag polynomial to obtain the lag polynomial b(L) in Proposition 5. The lag

polynomial b(L) is invertible because all of its coefficients on aggregate inflation are positive

and the sum of the coefficients is finite, b(1) <∞.

C Partition of aggregate and measured inflation

This appendix derives the partition of aggregate inflation and measured inflation in terms

of terminated price spells with different durations. Combine equation (B.3), equation (B.4),
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and the relationship πTt = 1
1−Γπt − Γ

1−ΓπNt to:

π̂mt =
1

1− δ
1

1− Γ
πt −

Γ

1− Γ
πNt −

δ

1− δ
1

1− Γ
(P̂Nt − P̂t−1) . (C.1)

Replace each component of measured inflation by a sum over terminated price spells with

different durations. The first component is aggregate inflation, and the recursive law of motion

of P̂t implies π̂t = (1− κ)[P̂ ?t − P̂t−1] or:

π̂t = (1− κ)[P̂ ?t − (1− κ)
∞∑
s=0

κsP̂ ?t−s−1] .

Rearrange this to obtain the partition (17) of aggregate inflation in the main text. The second

component in equation (C.1) is N inflation. Proceed along the same lines as for aggregate

inflation to obtain π̂Nt = (1− κγ)2
∑∞

i=0(κγ)i(P̂ ?t − P̂ ?t−1−i).

The third component in equation (C.1) is the price differential P̂Nt − P̂t−1. Rearrange it

by using the recursive law of motion of P̂Nt = (1− κγ)P̂ ?t + κγP̂Nt−1:

P̂Nt − P̂t−1 = (P̂ ?t − P̂t−1)− κγ(P̂ ?t − P̂Nt−1) .

Replace the P̂Nt−1 on the right-hand side by the infinite discounted sum of current and past

optimal prices that follows from iterating backward the recursive law of motion for P̂Nt, and

do the same for the P̂t−1 that occurs on the right-hand side. This yields:

P̂Nt − P̂t−1 =
(
P̂ ?t − (1− κ)

∞∑
i=0

κiP̂ ?t−1−i
)
− κγ

(
P̂ ?t − (1− κγ)

∞∑
i=0

(κγ)iP̂ ?t−1−i
)

=
∞∑
i=0

[
(1− κ)κi − κγ(1− κγ)(κγ)i

]
(P̂ ?t − P̂ ?t−1−i) .

In order to express measured inflation in terms of terminated price spells with different

durations, substitute for the three components π̂t and π̂Nt and P̂Nt − P̂t−1 the respective

expressions of terminated price spells with different durations into equation (C.1). Summa-

rizing coefficients and simplifying them yields the partition (17) of measured inflation in the

main text. In terms of the primitive parameters, the function Fm(i) is equal to:

Fm(i) = (1− α)−1

[(
1 +

δγ

1− γ

)(
(1−κ)2κi

1−δ − δ[(1−κ)κi−(1−κγ)(κγ)i+1]
1−δ

)
−
(

δγ

1− γ

)
(1− κγ)2(κγ)i

]
.
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It is straightforward to show that
∑∞

i=0 Fm(i) = 1.

D Product replacement bias when new products are small

This appendix contains the derivation of the steady state bias in measured inflation in Propo-

sition 6 that arises when new products are small in terms of their market share. Furthermore,

this appendix contains the derivations that belong to Proposition 7 and to Proposition 8,

respectively.

D.1 Steady state bias when new products are small

Measured price levels correspond to:

Pmt,t−1/q =

∫
Nt−1

gθsjtPjt dj , Pmt−1,t−1/q =

∫
Nt−1

gθsjtPjt−1 dj .

In order to integrate over firms’ prices, I combine the approach in Weber (2011a) with the

derivations in Appendix B.1. Recall that the firms in the FIP model differ regarding the

length of their price spell and regarding the level of their productivity. The productivity

level depends on the age of a firm. I introduce notation for firms’ prices that reflects this

two-dimensional heterogeneity. Denote the current price Pjt of the firm j as:

Pjt = P ?t−(n+k),t−k , n = 0, 1, 2, . . . , k = 0, 1, 2, . . . .

Price Pjt equals either the optimal price of the current period or the optimal price of some

previous period. The first subscript t− (n+k) indicates the date of market entry. The second

subscript t− k indicates the date of the last price change. Index n denotes the time between

entry and price change.

Computing Pmt,t−1: Consider the average price of the cohort that entered s ≥ 0 periods

ago at time t−s, and normalize the mass of this cohort to unity. At time t, this average price

is:

Λ1t(s) =


(1− α)

∑s−1
k=0 α

kP ?t−s,t−k + αsP ?t−s,t−s if s ≥ 1 ,

P ?t,t if s = 0 .

(D.1)
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The first subscript is the same for all prices because all firms belong to the t−s entry cohort.

The second subscript differ across prices because, within that cohort, price durations differ.

Appendix B.1 derives the mass of each t− s entry cohort that is contained in the basket

Nt−1 of the SB. These derivations apply here, too. Therefore, rewrite the measured price

level Pmt,t−1 as sum over the cohort-specific average prices Λ1t(s) weighted by the appropriate

cohort mass:

Pmt,t−1/q =
∞∑
s=1

δ(1− δ)s(1− γs)gθsΛ1t(s) . (D.2)

Expand this expression according to:

Pmt,t−1/q = δ
∞∑
s=0

[(1− δ)gθ]sΛ1t(s)− δ
∞∑
s=0

[(1− δ)γgθ]sΛ1t(s) ,

where summations now start at zero. Rewrite the measured price level as follows:

Pmt,t−1 = qZ1P1t − qZγPγt . (D.3)

Here, Zγ denotes a scalar that normalizes the mass of products in Pγt to unity. Define:

Pγt =
1

Zγ
δ

∞∑
s=0

[(1− δ)γgθ]sΛ1t(s) . (D.4)

Moreover, P1t is the special case of Pγt for γ = 1, and Z1 is the special case of Zγ for γ = 1.

Computing Pγt: First, determine Zγ such that it normalizes the mass of products in Pγt

to unity. Obtain Zγ = δ
∑∞

s=0[(1 − δ)γgθ]s or Zγ = δ/[1− (1− δ)γgθ], with (1 − δ)γgθ < 1.

Plug Zγ into equation (D.4) and summarize parameters as ψγ = (1− δ)γgθ to obtain:

Pγt[1− ψγ ]−1 =

∞∑
s=0

ψsγΛ1t(s) .

Substitute for Λ1t(s) by equation (D.1) and simplify the result by using the mapping between

optimal prices of firms with different age that follows from the optimal pricing equation of

firms, P ?t−k,t−k = gn P ?t−(n+k),t−k.
1 For example, with k = 0, this mapping says that the

optimal price of a new firm P ?t,t is proportional to the optimal price P ?t−n,t of a firm with age

1The optimal pricing equation of firms is stated explicitly in the equation (G.2). See also the Appendix
G.2. Further details are contained in Weber (2011a).
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n. The factor of proportionality gn exceeds unity and depends on the age difference n across

firms. Use this mapping to obtain, after some algebra:

Pγt[1− ψγ ]−1 =

(
1− αψγ/g
1− ψγ/g

) ∞∑
s=0

(αψγ)sP ?t−s,t−s

Express this equation recursively as:

Pγt =(1− ψγ)

(
1− αψγ/g
1− ψγ/g

)
P ?t,t + αψγPγt−1 .

Summarizing Pmt,t−1: The parameter q in equation (D.3) normalizes the mass of products in

the measured price level Pmt,t−1 to unity. Obtain 1/q = δ
∑∞

s=0[(1−δ)gθ]s−δ∑∞s=0[(1−δ)γgθ]s

or qδ =
(1−ψ1)(1−ψγ)

ψ1−ψγ . Collect the variables that belong to the measured price level in equation

(D.3). Define relative price levels as deviations from the aggregate price level according to

pmt,t−1 = Pmt,t−1/Pt and pγt = Pγt/Pt, and define the optimal relative price of a new firm

according to p?t = P ?t,t/Pt. Obtain:

pmt,t−1 =

(
1− ψγ
ψ1 − ψγ

)
p1t −

(
1− ψ1

ψ1 − ψγ

)
pγt

pγt = (1− ψγ)

(
1− αψγ/g
1− ψγ/g

)
p?t + αψγπ

−1
t pγt−1

p1t = (1− ψ1)

(
1− αψ1/g

1− ψ1/g

)
p?t + αψ1π

−1
t p1t−1 .

(D.5)

Computing Pmt−1,t−1: The price level Pmt−1,t−1 refers to the same basket as P̂mt,t−1 in equation

(D.2) while the average price of a particular entry cohort differs from P̂mt,t−1 because the price

distribution of any cohort is less fanned out at time t− 1 than at time t. Obtain:

Pmt−1,t−1/q =

∞∑
s=1

δ(1− δ)s(1− γs)gθsΛ1t−1(s− 1) .

Simplify the right-hand side along the same lines as for P̂mt,t−1, and define the relative measured

price level as pmt−1,t−1 = Pmt−1,t−1/Pt−1. Obtain:

pmt−1,t−1 =

(
1− ψγ
ψ1 − ψγ

)
ψ1p1t−1 −

(
1− ψ1

ψ1 − ψγ

)
ψγpγt−1 . (D.6)
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Computing the steady state bias: The bias is defined as measured inflation over aggre-

gate inflation, Bt = πmt /πt. Measured inflation is defined as πmt = Pmt,t−1/P
m
t−1,t−1. Rearrange

it according to πmt = πtp
m
t,t−1/p

m
t−1,t−1 and obtain for the bias that Bt = pmt,t−1/p

m
t−1,t−1. De-

note the relative measured price levels in steady state with an overbar to obtain the steady

state bias:

B = p̄mt,t−1/p̄
m
t−1,t−1 .

Equations (D.5) and (D.6) deliver the steady state values of the relative measured price levels:

p̄mt,t−1 = g−1 (1− ψγ)(1− ψ1)

(1− ψγ/g)(1− ψ1/g)
p? , p̄mt−1,t−1 =

(1− ψγ)(1− ψ1)

(1− ψγ/g)(1− ψ1/g)
p? .

Plugging them into the steady state bias B and simplifying it yields the Proposition 6.

D.2 Measured inflation and aggregate inflation

This appendix derives the lag polynomial in Proposition 7 that maps aggregate inflation into

measured inflation. Calculate the relative price levels in equations (D.5) and (D.6) to the first

order to obtain:

(ψ1 − ψγ)p̂mt,t−1 = g(1− ψγ/g)p̂1t − g(1− ψ1/g)p̂γt

(ψ1 − ψγ)p̂mt−1,t−1 = ψ1(1− ψγ/g)p̂1t−1 − ψγ(1− ψ1/g)p̂γt−1

p̂γt = (1− αψγ/g)p̂?t + (αψγ/g)(p̂γt−1 − π̂t)

p̂1t = (1− αψ1/g)p̂?t + (αψ1/g)(p̂1t−1 − π̂t)

(D.7)

The price level p̂1t can be simplified by the recursive law of motion of aggregate inflation,

which implies (1 − αψ1/g)p̂?t = (αψ1/g)π̂t when calculated to the first order.2 Substitute

this expression into p̂1t to find that p̂1t = (αψ1/g)p̂1t−1. This difference equation has the

nonexplosive solution p̂1t = 0 for all t’s.

Calculate measured inflation to the first order, π̂mt = p̂mt,t−1− p̂mt−1,t−1 + π̂t, and substitute

for measured price levels to obtain:

(ψ1 − ψγ)(π̂mt − π̂t) = −g(1− ψ1/g)p̂γt + ψγ(1− ψ1/g)p̂γt−1 .

Express p̂γt in terms of aggregate inflation by using (1−αψ1/g)p̂?t = (αψ1/g)π̂t and rearrange

2See equation (G.3) for the recursive law of motion of aggregate inflation in the FIP model.
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it to obtain:

p̂γt = α/g
ψ1 − ψγ

1− αψ1/g
(1− (αψγ/g)L)−1π̂t . (D.8)

Plug this into measured inflation and rewrite it according to:

(1− (αψγ/g)L)(π̂mt − π̂t) = −α 1− ψ1/g

1− αψ1/g
(π̂t − ψγ/gπ̂t−1) .

Solve for measured inflation:

π̂mt =
1− α

1− αψ1/g

(
1− (αψγ/g)(ψ1/g)L

1− (αψγ/g)L

)
π̂t .

Rearrange the expression in the large brackets according to:

(1− (αψγ/g)(ψ1/g)L)

∞∑
i=0

(αψγ/g)L)i = 1 + (1− ψ1/g)

∞∑
i=1

(αψγ/g)L)i .

Finally, substitute the definitions of ψ1 and ψγ to obtain the mapping between measured

inflation and aggregate inflation in Proposition 7.

The properties of aρ(L) in Proposition 7 are derived as follows. The polynomial aρ(L) is

invertible if all coefficients are positive and if their sum is finite, aρ(1) < ∞. The definition

of aρ(L) readily implies that all coefficients are positive. To show aρ(1) < ∞, replace L by

unity in aρ(L) and simplify. Obtain:

aρ(1) =

(
1− α
1− κρ

)(
1− (1− δ)κγρ2

1− κγ

)
<∞ .

To show that the sum of coefficients fulfills the inequality aρ(1) < 1, impose this inequality on

aρ(1) and simplify. For the inequality to be fulfilled the condition (1−δ)γgθ−1 < 1 must hold.

Plug into that condition the maximum value of growth g = (1−δ)− 1
θ to obtain γ < (1−δ)− 1

θ .

This last condition holds for all admissible parameter values.

D.3 Bias in the measured price level

Calculated to the first order, measured output is equal to Ŷ m
t = Ŷt − p̂mt,t−1 by using the def-

inition pmt,t−1 = Pmt,t−1/Pt. By using equations (D.7) and exploiting that p̂1t = 0 as derived in

Appendix D.2, the measured price level and the auxiliary price level p̂γt are related according
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to (ψ1 − ψγ)p̂mt,t−1 = −g(1− ψ1/g)p̂γt. Substitute for p̂γt by equation (D.8) to obtain:

−p̂mt,t−1 = α
1− ψ1/g

1− αψ1/g
(1− (αψγ/g)L)−1π̂t .

Rearrange this expression and use p̂mt,t−1 = P̂mt,t−1 − P̂t to obtain:

P̂t − P̂mt,t−1 =
α(1− (1− δ)ρ)

1− κρ
∞∑
i=0

(κγρ)iπ̂t−i .

This equation corresponds to the equation in Proposition 8.
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E Welfare-based loss function

Weber (2011b) examines in Section 5 the ad hoc loss function with inflation and the output

gap as arguments, in order to examine the consequences of product replacement bias for

monetary policy. This appendix and the Appendix F revisit the monetary policy consequences

of product replacement bias for the case of the welfare-based loss function. The main finding

is that the results obtained in the paper are fairly insensitive with respect to using the ad

hoc loss function versus the welfare-based loss function.

This appendix contains the derivation of the welfare-based loss function, which approxi-

mates the expected discounted lifetime utility of the N and the T household in the NT model

that is described in Section 2 of the paper. The Appendix F revisits the policy analysis in

Section 5 of the paper but employs the welfare-based loss function.

This appendix calculates, accurate to the second order and at the symmetric steady state

with zero aggregate inflation (SZISS), the joint expected discounted lifetime utility of the N

and the T household that corresponds to equation (3) in the paper:

E0

∞∑
t=0

βt [Γu(CNt, ξt) + (1− Γ)u(CTt, ξt)− h(Lt)] .

In a first step, calculate the labor argument of utility to the second order. In a second step,

calculate the two consumption arguments to the second order. A variable with a hat is

generically defined as ẑt = log(zt/z).

E.1 Labor

Calculating the labor argument to the second order yields:

h(Lt) = Y uC

(
L̂t + 1

2(1 + ν)L̂2
t

)
+ tip+ o3 .

Here, tip denotes terms independent of policy, o3 indicates terms of order three or higher,

and ν = LhLL
hL

. Impose 1− τL = θ/(θ − 1) and exploit the households’ optimality conditions

that imply AuC = hL or, by aggregate technology, Y uC = LhL. Variables without a time

subscript denote steady state values.

In order to substitute aggregate labor for N and T consumption, consider the aggregate
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technology that is derived in Appendix A.2:

Lt = ΓCNt∆Nt/At + (1− Γ)CTt∆Tt/At .

Employ the following definition of N price dispersion:

∆Nt =
1

Γ

∫ 1

0
γsjt

(
Pjt
PNt

)−θ
dj . (E.1)

Moreover, employ the analog definition for ∆Tt. Calculating aggregate technology to the

second order yields:

L̂t = ΓĈNt + (1− Γ)ĈTt − at + 1
2ΓĈ2

Nt + 1
2(1− Γ)Ĉ2

Tt − 1
2 Ŷ

2
t + Γ∆̂Nt + (1− Γ)∆̂Tt + tip+ o3 .

Squaring this equation yields:

L̂2
t = Ŷ 2

t − 2Ŷtat + tip+ o3 .

Here, use the definition of aggregate output Ŷt = ΓĈNt + (1 − Γ)ĈTt + o2 that is accurate

to the first order. Employ the equation for L̂t and the one for L̂2
t to substitute for aggregate

labor in h(Lt). This yields the disutility of labor expressed in terms of N and T consumption,

output, and price dispersion:

h(Lt) = Y uC

(
ΓĈNt + (1− Γ)ĈTt − at + 1

2ΓĈ2
Nt + 1

2(1− Γ)Ĉ2
Tt + 1

2νŶ
2
t − (1 + ν)Ŷtat

+ Γ∆̂Nt + (1− Γ)∆̂Tt

)
+ tip+ o3 .

E.2 Consumption

Calculating the N consumption argument of joint utility to the second order yields:

u(CNt, ξt) = CNuC

(
ĈNt + 1

2(1− σ−1)Ĉ2
Nt + σ−1ĈNtgt

)
+ tip+ o3 .
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Define σ−1 = −CNuCC
uC

and gt = − ξuCξ
CNuCC

ξ̂t.
3 Along the same lines, obtain for the T con-

sumption argument:

u(CTt, ξt) = CTuC

(
ĈTt + 1

2(1− σ−1)Ĉ2
Tt + σ−1ĈTtgt

)
+ tip+ o3 .

Combining both arguments yields:

Γu(CNt, ξt) + (1− Γ)u(CTt, ξt)

= Y uC

(
ΓĈNt + (1− Γ)ĈTt + 1

2(1− σ−1)(ΓĈ2
Nt + (1− Γ)Ĉ2

Tt) + σ−1Ŷtgt

)
+ tip+ o3 .

E.3 Combining labor and consumption

Combine the labor argument and the two consumption arguments to the utility function and

simplify to obtain:

Γu(CNt, ξt) + (1− Γ)u(CTt, ξt)− h(Lt)

=Y uC

(
− 1

2σ
−1[ΓĈ2

Nt + (1− Γ)Ĉ2
Tt]− 1

2νŶ
2
t + Ŷt[σ

−1gt + (1 + ν)at]− Γ∆̂Nt − (1− Γ)∆̂Tt

)
+ tip+ o3 .

In this equation, link [ΓĈ2
Nt + (1− Γ)Ĉ2

Tt] and Ŷ 2
t by squaring Ŷt = ΓĈNt + (1− Γ)ĈTt + o2

and rearranging it according to:

[ΓĈ2
Nt + (1− Γ)Ĉ2

Tt] = Ŷ 2
t + Γ(1− Γ)(ĈNt − ĈTt)2 + o3 .

Use this link and simplify the utility function to obtain:

Γu(CNt, ξt) + (1− Γ)u(CTt, ξt)− h(Lt)

= Y uC

(
− 1

2(σ−1 + ν)x2
t − 1

2σ
−1Γ(1− Γ)(ĈNt − ĈTt)2 − Γ∆̂Nt − (1− Γ)∆̂Tt

)
+ tip+ o3 .

Define the natural level of output as Ŷ na
t = σ−1

σ−1+ν
gt + 1+ν

σ−1+ν
at, and denote the output gap

as xt = Ŷt − Ŷ na
t . Employ the households’ optimality conditions and the definition of the

3For log utility of consumption, σ = 1.

21



aggregate price level to obtain the second order accurate relationship:

σ−1(ĈNt − ĈTt)2 =
σ

(1− Γ)2
(P̂Nt − P̂t)2 + o3 .

Plug it into the approximate utility function to obtain:

Γu(CNt, ξt) + (1− Γ)u(CTt, ξt)− h(Lt) (E.2)

= Y uC

(
− 1

2(σ−1 + ν)x2
t − 1

2σ
Γ

1− Γ
(P̂Nt − P̂t)2 − Γ∆̂Nt − (1− Γ)∆̂Tt

)
+ tip+ o3 .

E.4 N price dispersion

In order to obtain a recursive expression for theN price dispersion ∆Nt, define pNjt = Pjt/PNt

and calculate the definition (E.1) to the second order:

∆̂Nt +
1

2
∆̂2
Nt = −θ 1

Γ

∫ 1

0
γsjt p̂Njt dj + 1

2θ
2 1

Γ

∫ 1

0
γsjt p̂2

Njt dj + o3 .

Define weighted first and second moments according to:

Ej(p̂Njt) =
1

Γ

∫ 1

0
γsjt p̂Njt dj , Vj(p̂Njt) =

1

Γ

∫ 1

0
γsjt p̂2

Njt dj .

The relative mass of current and past optimal prices in the N price level and the fact that

optimal prices are the same for all adjusting firms imply that first and second moments can

be expressed as:

Ej(p̂Njt) = (1− κγ)

∞∑
z=0

(κγ)z p̂?Nt−z , Vj(p̂Njt) = (1− κγ)

∞∑
z=0

(κγ)z(p̂?Nt−z)
2 . (E.3)

Here, the relative optimal price is denoted as p̂?Nt−z = P̂ ?t−z − P̂Nt. Plug the first and the

second moment into the second order expansion of the N price dispersion and exploit that

∆̂2
Nt = 0 + o3 to obtain:

∆̂Nt = −θEj(p̂Njt) + 1
2θ

2Vj(p̂Njt) + o3 .

By the equations (E.3), obtain Ej(p̂Njt) = 1
2(θ−1)Vj(p̂Njt)+o3 and thus ∆̂Nt = 1

2θVj(p̂Njt)+

o3. Rearranging Vj(p̂Njt) further and exploiting the recursive law of motion for P̂Nt yields
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the following recursive expression for N price dispersion:

∆̂Nt = κγ∆̂Nt−1 + 1
2θ

κγ

1− κγ π̂
2
Nt + o3 .

E.5 T price dispersion

In order to derive a similar expression for T price dispersion, consider the definition of it,

∆Tt = 1
1−Γ

∫ 1
0 (1− γsjt)p−θTjt dj, with pTjt = Pjt/PTt, and calculate it to the second order:

(1−Γ)(∆̂Tt+
1

2
∆̂2
Tt) = −θ

∫ 1

0
p̂Tjt dj+θΓ

1

Γ

∫ 1

0
γsjt p̂Tjt dj+

1
2θ

2

∫ 1

0
p̂2
Tjt dj−1

2θ
2Γ

1

Γ

∫ 1

0
γsjt p̂2

Tjt dj+o3 .

The relative mass of current and past optimal prices in the N price level and in the aggregate

price level and the fact that optimal prices are the same for all adjusting firms imply:

(1− Γ)(∆̂Tt +
1

2
∆̂2
Tt) =− θ(1− κ)

∞∑
z=0

κz p̂?T t−z + θΓ(1− κγ)

∞∑
z=0

(κγ)z p̂?T t−z

+ 1
2θ

2(1− κ)
∞∑
z=0

κz(p̂?T t−z)
2 − 1

2θ
2Γ(1− κγ)

∞∑
z=0

(κγ)z(p̂?T t−z)
2 + o3 .

Define pjt = Pjt/Pt. Moreover, define Ej(p̂jt) and Vj(p̂jt) analog to Ej(p̂Njt) and Vj(p̂Njt),

respectively, and rewrite the approximate expression for T price dispersion as:

(1− Γ)(∆̂Tt +
1

2
∆̂2
Tt) = −θEj(p̂jt) + θΓEj(p̂Njt)− θ[P̂t − ΓP̂Nt − (1− Γ)P̂Tt]

+ 1
2θ

2Vj(p̂jt)− 1
2θ

2ΓVj(p̂Njt) + 1
2θ

2(P̂t − P̂Tt)2 − 1
2θ

2Γ(P̂Nt − P̂Tt)2 + o3 .

Employ the definition of the aggregate price level P̂t = ΓP̂Nt + (1− Γ)P̂Tt + o2 to obtain:

(1− Γ)(∆̂Tt +
1

2
∆̂2
Tt) = −θEj(p̂jt) + θΓEj(p̂Njt)− θ[P̂t − ΓP̂Nt − (1− Γ)P̂Tt]

+ 1
2θ

2Vj(p̂jt)− 1
2θ

2ΓVj(p̂Njt)− 1
2θ

2 Γ

1− Γ
(P̂Nt − P̂t)2 + o3 .

To rearrange the term in square brackets, calculate the definition of the aggregate price level

P 1−θ
t = ΓP 1−θ

Nt +(1−Γ)P 1−θ
T t , which is equation (11) in Weber (2011b), accurate to the second

order:

P̂t − ΓP̂Nt − (1− Γ)P̂Tt = 1
2(1− θ) Γ

1− Γ
(P̂Nt − P̂t)2 + o3 .
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Plug it into the approximate expression of T price dispersion to obtain:

(1− Γ)(∆̂Tt +
1

2
∆̂2
Tt) = −θEj(p̂jt) + θΓEj(p̂Njt)

+ 1
2θ

2Vj(p̂jt)− 1
2θ

2ΓVj(p̂Njt)− 1
2θ

Γ

1− Γ
(P̂Nt − P̂t)2 + o3 .

This equation implies ∆̂2
Tt = 0 +o3. Moreover, employ Ej(p̂Njt) = 1

2(θ−1)Vj(p̂Njt) +o3 from

before and, correspondingly, Ej(p̂jt) = 1
2(θ − 1)Vj(p̂jt) + o3, to obtain:

(1− Γ)∆̂Tt = 1
2θVj(p̂jt)− 1

2θΓVj(p̂Njt)− 1
2θ

Γ

1− Γ
(P̂Nt − P̂t)2 + o3 .

Use ∆̂Nt = 1
2θVj(p̂Njt) + o3 to find:

(1− Γ)∆̂Tt + Γ∆̂Nt = 1
2θVj(p̂jt)− 1

2θ
Γ

1− Γ
(P̂Nt − P̂t)2 + o3 .

Similar to Vj(p̂Njt), the cross-sectional variance Vj(p̂jt) evolves recursively according to:

Vj(p̂jt) = κVj(p̂jt−1) +
κ

1− κπ̂
2
t + o3 .

Plug this into (1 − Γ)∆̂Tt + Γ∆̂Nt. Then, compute the infinite sum that is discounted with

β, and impose the initial condition Vj(p̂j,−1) = o3 to obtain:

∞∑
t=0

βt
(

(1− Γ)∆̂Tt + Γ∆̂Nt + 1
2θ

Γ

1− Γ
(P̂Nt − P̂t)2

)
= 1

2θ
κ

(1− κ)(1− κβ)

∞∑
t=0

βtπ̂2
t + o3 .

(E.4)

E.6 Summarizing terms

Define the welfare-based loss function LWB as:

LWB = −E0

∞∑
t=0

βt
(

Γu(CNt, ξt) + (1− Γ)u(CTt, ξt)− h(Lt)

)
.

Combine equation (E.2) and equation (E.4) and rearrange them to obtain:

LWB = 1
2ΩE0

∞∑
t=0

βt
(
π̂2
t + λx2

t − λR(P̂Nt − P̂t)2

)
+ tip+ o3 .
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Parameters are defined as:

Ω = (σ−1+ν)
θ

φ
Y uC , λ =

φ

θ
, λR = λ

θ − σ
σ−1 + ν

γδ

1− γ , φ =
(1− κ)(1− κβ)

κ
(σ−1+ν) .

In order to express the price differential P̂Nt − P̂t in the welfare-based loss function in terms

of inflation rates, rewrite it using the recursive laws of motion of the N price level and the

aggregate price level according to:

P̂Nt − P̂t = (P̂ ?t − P̂t)− (P̂ ?t − P̂Nt) =
κ

1− κπ̂t −
κγ

1− κγ π̂Nt .

Plug this expression for the price differential into the welfare-based loss function to obtain:

LWB = 1
2ΩE0

∞∑
t=0

βt
(
π̂2
t + λx2

t − λR[ κ
1−κ π̂t −

κγ
1−κγ π̂Nt]

2

)
+ tip+ o3 .

The welfare-based loss function attributes a positive weight to variations in inflation and in

the output gap. Both arguments occur in the ad hoc loss function that underlies the policy

analysis in Section 5 of Weber (2011b). However, in addition to inflation stabilization and

output gap stabilization, the welfare-based loss function also attributes the weight λR to the

squared quasi-differential of aggregate inflation and N inflation.

E.7 Welfare-based loss function versus ad hoc loss function

The ad hoc loss function corresponds to the special case λR = 0 of the welfare-based loss

function λR 6= 0. The weight λR is positive as long as θ > σ. Accordingly, the squared

quasi-differential between inflation rates enters the welfare-based loss function negatively.

There are three reasons for the inflation differential to occur in the welfare-based loss

function. First, the variations in the inflation differential reflect the variations in the relative

price P̂Nt − P̂Tt.
4 If the relative price between N and T consumption differs from zero,

then the N household and the T household find it optimal to consume different amounts of

their respective consumption composites ĈNt and ĈTt. From a welfare perspective, however,

this is inefficient. Accordingly, the central bank reduces the welfare loss by stabilizing the

relative price between N and T consumption, and this corresponds to stabilizing the inflation

differential. This stabilization motive is captured by the parameter σ in the weight λR. If σ

4Recall that the inflation differential is linked to the price differential P̂Nt − P̂t. This price differential can
be rearrange according to P̂Nt − P̂t = P̂Nt − ΓP̂Nt − (1− Γ)P̂Tt = (1− Γ)(P̂Nt − P̂Tt).
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is large enough, this motive dominates the weight λR and implies λR < 0. In this case, the

squared inflation differential enters the loss function positively.

Second, price dispersion that arises from differences in the two prices P̂Nt and P̂Tt matters

neither for the N household nor for the T household because none of them consumes both

composites ĈNt and ĈTt. However, by stabilizing aggregate inflation π̂t, the central bank

implicitly penalizes variation in the relative price P̂Nt− P̂Tt because the aggregate price level

is a combination of the household-specific price levels. The weight λR corrects for this over-

emphasis on stabilizing aggregate inflation, and therefore the inflation differential enters the

loss function negatively as long as θ > σ.

The third reason for the inflation differential to occur in the welfare-based loss function

is also related to price dispersion. Dispersion among prices of all products j ∈ Jt affects both

inflation rates π̂Tt and π̂Nt at the same time because each inflation rate comprises all prices

even though each inflation rate weights these prices differently. At least to some degree, thus,

stabilizing one inflation rate also stabilizes the other inflation rate, and the weight λR also

corrects for this “double-counting” effect. To sum up, by imposing λR = 0, the ad hoc loss

function abstracts from benefits and losses that arise because the N and the T household

differ from each other.

F Monetary policy using the welfare-based loss function

This appendix revisits how the results in Section 5 of Weber (2011b) change when the NT

policy corresponds to the optimal policy that is derived from the welfare-based loss function

LWB rather than from the ad hoc loss function.

F.1 Optimal commitment

The lagrangian to the policy problem with the objective function LWB corresponds to:

L = E0

∞∑
t=0

βt
[

1
2

(
π̂2
t + λx2

t − λR( κ
1−κ π̂t −

κγ
1−κγ π̂Nt)

2
)

−ψ1t(π̂t − βπ̂t+1 − φxt − ut) (F.1)

−ψ2t(π̂Nt − κγπ̂Nt−1 − 1−κγ
1−κ π̂t + 1−κγ

1−κ κπ̂t−1)
]
.

The first constraint is the NKPC. The second constraint is the mapping between aggregate

inflation and N inflation that is established in the Proposition 2 of Weber (2011b). For the
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case γ = 1, there is no tradeoff between stabilizing aggregate inflation and stabilizing the

inflation differential because, in this case, the N household is the representative household,

such that π̂t = π̂Nt. Accordingly, in this case, the second constraint will not be binding. For

the general case 0 < γ < 1, however, the second constraint will be binding because aggregate

inflation and N inflation no longer coincide.

Deriving the optimality conditions with respect to π̂t, π̂Nt, xt and rearranging them yields

the optimal NT policy under commitment:

Et(1− κγβL−1)
[
π̂t + λ

φ(xt − xt−1)
]

= (1− γ) κ
1−κλR

(
κ

1−κ π̂t −
κγ

1−κγ π̂Nt

)
. (F.2)

The optimal NT policy depends on aggregate inflation and on the aggregate output gap but

it also depends on the inflation differential. Evidently, the optimal NT policy that is derived

from the ad hoc loss function in Section 5 of Weber (2011b), π̂t+
λ
φ(xt−xt−1) = 0, is embedded

into the left-hand side of the optimal NT policy that is derived from the welfare-based loss

function.

To test how restrictive it is to impose λR = 0 in Weber (2011b), compare the optimal

NT policy (F.2) to the T policy π̂Tt + λ
φ(xTt − xTt−1) = 0 that is derived in Section 5.1 of

this paper. The first difference between these two policies is that the T policy does not refer

to aggregate variables. Weber (2011b) analyzes the consequences of this first difference in

Section 5.1. The second difference is that the T policy ignores the consequences of household

heterogeneity in the welfare-based loss function by imposing λR = 0. Here, it is tested how

robust the results in the paper are with respect to this second difference.

Analog to the paper, compute the relative welfare loss LWB
R = (LWB − LWB)/LWB for

different rates δ of product turnover. LWB is the loss associated with the T policy in the

NT model, and LWB is the loss associated with the the optimal NT policy (F.2) in the NT

model. Zero product turnover continues to serve as useful reference point because the relative

loss is equal to zero in this case. There are two reasons for this. First, as in the paper, there is

no difference between measured and aggregate variables without product turnover. Second,

the weight λR is proportional to δ and therefore it is equal to zero without product turnover.

For both reasons, the T policy and the optimal NT policy (F.2) coincide without product

turnover and losses LWB and LWB are the same.

Table 1 contains the relative loss LWB
R computed from the welfare-based loss function and

the relative loss LR computed from the ad hoc loss function at the benchmark calibration of δ
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equal to 0.069395. The variable LR is the welfare metric in the paper. The table shows relative

losses for both the Case I and the Case II. Each case corresponds to a specific assumption

of how the central bank translates T variables into measured variables.5 For optimal policy

under commitment, the numerical differences between the relative losses in the table are fairly

small. This finding suggests that both the welfare-based loss function and the ad hoc loss

function yield very similar results.

Table 1: Relative losses for welfare-based and ad hoc loss function.

Case Commitment Discretion Interest rule

100×LWB
R I 0.09 -18.92 -49.71

100×LWB
R II 0.24 -4.65 -32.80

100×LR I 0.07 -19.12 -49.79
100×LR II 0.28 -4.68 -32.87

To make sure that this similarity of results does not only arise at the benchmark calibra-

tion, Panel (a) of Figure 1 plots the relative loss LWB
R computed from the welfare-based loss

function for the range δ ∈ [0, 0.15]. The panel should be compared to the Panel (a) of the

Figure 2 in Weber (2011b), which plots LR. The comparison reveals that the relative losses

LWB
R and LR remain fairly similar for the entire range of values considered for δ. It therefore

seems reasonable to conclude that the results in Section 5.1 of Weber (2011b) are robust

as to whether they are derived from the ad hoc loss function or from the welfare-based loss

function.

F.2 Optimal discretion

To obtain the optimal NT policy under discretionary monetary policy, derive the optimality

conditions with respect to π̂t, π̂Nt and xt from the lagrangian (F.1) accounting for the fact

that the discretionary central bank cannot influence private sector expectations. Rearranging

the optimality conditions yields:

Et(1− κγβL−1)
[
π̂t + λ

φxt

]
= (1− γ) κ

1−κλR

(
κ

1−κ π̂t −
κγ

1−κγ π̂Nt

)
. (F.3)

As for the optimal policy under commitment, the optimal NT policy under discretion depends

on aggregate inflation, the aggregate output gap, and the inflation differential. Again, the

optimal NT policy that is derived from the ad hoc loss function in Section 5.2 of Weber

(2011b), π̂t + λ
φxt = 0, is embedded into the optimal NT policy (F.3).

5See Section 5 in Weber (2011b) for more details.
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Figure 1: Relative loss LWB
R computed from the welfare-based loss function as a function of product replace-

ment bias that is captured by δ. Panel (a) shows the relative loss for optimal policy under commitment, Panel
(b) shows it for optimal policy under discretion, and Panel (c) shows it for the interest rate rule.

For discretionary monetary policy, Table 1 contains the relative loss LWB
R computed from

the welfare-based loss function and the relative loss LR computed from the ad hoc loss

function at the benchmark calibration of δ. The table shows that relative losses are negative

for discretionary policy, as in Section 5.2 of the paper. Numerically, relative losses are fairly

similar irrespectively of whether they are computed from the welfare-based loss function or

from the ad hoc loss function. For Case I, the loss LWB is about nineteen percent smaller

than the loss LWB for both loss function. For Case II, the corresponding figure is about 4.7

percent. Moreover, Panel (b) of Figure 1 plots the relative loss that is computed from the

welfare-based loss function for the range δ ∈ [0, 0.15]. The panel should be compared to the

Panel (b) of the Figure 2 in Weber (2011b), which plots LR for discretionary monetary policy.

Again, the comparison reveals that the relative losses LWB
R and LR remain fairly similar for

the entire range of values considered for δ.
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F.3 Interest rate rule

The functional form of the interest rate rule in Section 5.3 of Weber (2011b) is not affected by

the functional form of the loss function because this rule is not derived from first principles.

Accordingly, the equilibrium dynamics of aggregate inflation and the aggregate output gap are

the same for both the welfare-based loss function and the ad hoc loss function. Nevertheless,

when the same equilibrium dynamics are evaluated in terms of welfare by the welfare-based

loss function rather than by the ad hoc loss function, this affects the relative loss LWB
R .

Table 1 contains the relative losses LWB
R and LR for the interest rate rule and computed

at the benchmark calibration with δ equal to 0.069395. The numerical differences between

the relative losses are fairly small. This finding mirrors those obtained for optimal policy

under commitment and discretion. Furthermore, Panel (c) in the Figure 1 shows the relative

loss LWB
R that emerges under the interest rate rule for the range δ ∈ [0, 0.15]. The panel

should be compared to the Panel (c) of the Figure 2 in Weber (2011b), which plots LR for

the interest rate rule. The message from this comparison resembles the one obtained from

Table 1, namely, relative losses are fairly similar.

Overall, the analysis in this appendix suggests that the monetary policy consequences

of the product replacement bias in Section 5 of Weber (2011b) are not driven by assuming

the ad hoc loss function. Rather, fairly similar results emerge when the welfare-based loss

function is employed for the analysis.

G The firm-specific productivity (FIP) model

This appendix provides technical details on the derivation of the extended model with firm-

specific productivity that occurs in Section 7 of Weber (2011b).

G.1 Intermediate good firms

The technology is

Yjt = gsjt (AtLjt)
1/χK

1−1/χ
jt−1 .

The output Yjt of product j is produced with labor Ljt and capital Kjt−1, with χ > 1. If

g > 1, then the term gsjt captures productivity growth at the firm level. The productivity

grows with the age sjt of firm j. This mechanism of a firm-specific level of productivity is
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from Weber (2011a). Stochastic aggregate productivity At is labor-augmenting and identical

across firms.

G.1.1 Input mix

Firms rent capital and labor in perfectly competitive factor markets. Let Wt and Ptr
k
t denote

the nominal wage rate and the nominal rental rate on capital services, respectively. Firm j

minimizes total costs over Ljt,Kjt−1 and subject to technology:

WtLjt + Ptr
K
t Kjt−1 s.t. Yjt = gsjt (AtLjt)

1/χK
1−1/χ
jt−1 .

Optimality requires that the firm uses the expensive input less:

Kjt−1

Ljt
=

(
1− 1/χ

1/χ

)
Wt

PtrKt
.

Plug the optimal input mix into the technology to obtain the factor demand functions:

Kjt−1 =
Yjt

gsjtA
1/χ
t

(
Wt

PtrKt

)1/χ(1− 1/χ

1/χ

)1/χ

, Ljt =
Yjt

gsjtA
1/χ
t

(
Wt

PtrKt

)1/χ−1(1− 1/χ

1/χ

)1/χ−1

.

Plug the factor demand functions into total costs and obtain nominal total costs:

TCjt = Ξ
Yjt

gsjtA
1/χ
t

W
1/χ
t

(
Ptr

K
t

)1−1/χ
.

Define the constant Ξ = (1− 1/χ)−(1−1/χ) (1/χ)−(1/χ). Total costs are firm-specific because

output and productivity is firm-specific. Nominal marginal costs are:

MCjt = Ξ
W

1/χ
t

(
Ptr

K
t

)1−1/χ

gsjtA
1/χ
t

.

Also, TCjt = MCjtYjt.

G.1.2 Pricing

Firm j resets its price Pjt infrequently according to:

max
Pjt

Et

∞∑
i=0

(κβ)i Ω̃t,t+i [PjtYjt+i −MCjt+iYjt+i] s.t. Yjt+i =

(
Pjt
Pt+i

)−θ
Yt+i .
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Factor βiΩ̃t,t+i =
uc(Ct+1,ξct+1)

uc(Ct,ξct )
Pt
Pt+1

discounts nominal payoffs and κ = α(1 − δ) is the prob-

ability to produce tomorrow at old prices accounting for exogenous firm death. Optimality

requires:

0 = Et

∞∑
i=0

(κβ)i
uc(Ct+i, ξ

c
t+i)

uc(Ct, ξct )

(
Yt+i
Yt

)(
Pt+i
Pt

)θ [
gsjt

P ?jt
Pt

(
Pt+i
Pt

)−1

− θ

θ − 1

mc?t+i
gi

]
.

Define the real wage rate as wt = Wt/Pt. Define real marginal costs of a new firm as:

mc?t = Ξ(wt/At)
1/χ
(
rKt
)1−1/χ

. (G.1)

Rearrange the pricing equation according to:

gsjt
P ?jt
Pt

=
θ

θ − 1

Et
∑∞

i=0(κβ/g)i
uc(Ct+i,ξ

c
t+i)

uc(Ct,ξct )

(
Yt+i
Yt

)(
Pt+i
Pt

)θ
mc?t+i

Et
∑∞

i=0(κβ)i
uc(Ct+i,ξct+i)

uc(Ct,ξct )

(
Yt+i
Yt

)(
Pt+i
Pt

)θ−1
. (G.2)

Denote the optimal relative price of a new firm with sjt = 0 as p?t = g0P ?jt/Pt. Obtain in

aggregate steady state with π = g that p?

mc? = θ
θ−1 . Linearize the pricing equation for a new

firm at the steady state with π = g to obtain:

p̂?t = (1− κβπθ−1)m̂c?t + κβπθ−1Et[π̂t+1 + p̂?t+1] . (G.3)

G.2 Price level

The aggregate price level Pt is the cost-minimal price of the final good Yt and is defined in

equation (G.10) below as:

P 1−θ
t =

∫ 1

0
P 1−θ
jt dj .

Aggregating individual prices to the price level is done exactly as in Weber (2011a). There,

aggregation exploits a relationship among the optimal prices of firms with different age that

follows from the pricing equation (G.2). For any two firms j and j′, the pricing equation

implies that optimal time t prices are proportional across firms with different age:

P ?jt = g(sj′t−sjt) P ?j′t . (G.4)
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Let j denote the young firm, sj′t > sjt, such that sj′t− sjt is a positive integer. The equation

says that the price of the young firm exceeds the price of the old firm if g > 1.

More generally, acknowledge that the current price Pjt of a firm j equals either the optimal

price of the current period or the optimal price of some previous period. Express this price

as:

Pjt = P ?t−(n+k),t−k , n = 0, 1, 2, . . . , k = 0, 1, 2, . . . .

The first subscript t − (n + k) indicates the date of market entry of the firm. The second

subscript t− k indicates the date of the last price change. Index n denotes the time between

entry and price change. With this new notation, rearrange equation (G.4) as follows. Let firm

j be of age k and have a price spell of k periods. Let firm j′ be of age n+ k and have a price

spell of k periods. Rearrange equation (G.4) as P ?t−k,t−k = gn P ?t−(n+k),t−k.

Employ this relationship among optimal prices of firms with different age and follow the

steps outlined in Weber (2011a) to obtain a recursive representation of the price level:

P 1−θ
t = ng(1− κg(θ−1))(P ?t,t)

1−θ + κP 1−θ
t−1 .

The scalar ng is defined as ng = δ/[1 − (1 − δ)g(θ−1)], with (1 − δ)g(θ−1) < 1.6 Rearranging

the price level recursion in terms of aggregate inflation yields:

1 = ng(1− κg(θ−1))(p?t )
1−θ + κπ

−(1−θ)
t (G.5)

Aggregate inflation is defined as πt = Pt/Pt−1 and the optimal relative price of a new firm is

equal to p?t = P ?t,t/Pt. It follows from the price level recursion that, in the steady state with

π = g, the optimal relative price of a new firm is equal to:

(p?)1−θ =
1

ng

1− κπ(θ−1)

1− κg(θ−1)
=

1

ng
.

Calculate the price level recursion rearranged in terms of inflation at this steady state to the

6Scalar ng replaces nγ in Weber (2011a) to avoid confusing notation.
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first order to obtain:

p̂?t =
κg(θ−1)

1− κg(θ−1)
π̂t . (G.6)

G.3 New Keynesian Phillips Curve

Combine the pricing equation (G.3) and the price level recursion (G.6) rearranged in terms

of inflation to obtain the New Keynesian Phillips curve (NKPC):

π̂t =
(1− κg(θ−1))(1− κβgθ−1)

κg(θ−1)
m̂c?t + βEt[π̂t+1] .

Calculate the real marginal costs (G.1) of a new firm to the first order to obtain with at = Ât:

m̂c?t = (1/χ)(ŵt − at) + (1− 1/χ)r̂Kt .

G.4 Aggregate technology of intermediate good firms

Aggregate the optimal input mix across all intermediate firms:

∫ 1

0
Kjt−1dj =

(
1− 1/χ

1/χ

)
Wt

PtrKt

∫ 1

0
Ljt dj

Denote aggregate capital as Kt−1 =
∫ 1

0 Kjt−1dj and aggregate labor as Lt =
∫ 1

0 Ljt dj.
7

Obtain:

rKt Kt−1 =

(
1− 1/χ

1/χ

)
wtLt . (G.7)

Thus, the labor capital ratio is the same for all firms. Calculate it to the first order to obtain:

r̂Kt + K̂t−1 = ŵt + L̂t .

Now rearrange the firm-specific technology according to:

Yjt/g
sjt =

(
At

Ljt
Kjt−1

)1/χ

Kjt−1 .

7See also the Appendix G.11 on market clearing.
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The the labor capital ratio is the same for all firms such that
Ljt
Kjt−1

= Lt
Kt−1

. Aggregate over

all intermediate firms and replace Yjt by product demand defined in equation (G.10):

Yt

∫ 1

0

(
Pjt
Pt

)−θ
g−sjt dj =

(
At

Lt
Kt−1

)1/χ ∫ 1

0
Kjt−1 dj .

Define the shifter of aggregate productivity according to:

∆t =

∫ 1

0

(
Pjt
Pt

)−θ
g−sjt dj .

Obtain the aggregate technology:

Yt = ∆−1
t (AtLt)

1/χK
1−1/χ
t−1 . (G.8)

Calculating the aggregate technology at the steady state to the first order yields:

Ŷt = at + (1/χ)L̂t + (1− 1/χ)K̂t−1 .

This expression exploits the fact that, to the first order, the endogenous shifter of aggregate

productivity ∆t is constant and equal to zero. I show this next.

G.5 Productivity shifter

Transform the productivity shifter ∆t into a recursive expression following similar steps as

for the aggregate price level.8 This yields:

∆t = ng(1− κg(θ−1))(p?t )
−θ + (κ/g)πθt∆t−1 .

Obtain in the steady state with π = g that ∆ = ng(p
?)−θ. When calculated to the first order,

the productivity shifter evolves according to:

∆̂t = κgθ−1∆̂t−1 − θ
{

(1− κg(θ−1))p̂?t − κgθ−1π̂t

}
. (G.9)

Equation (G.6) implies that the term in curly brackets is zero to the first order. This yields

that ∆̂t = κgθ−1∆̂t−1, and imposing that ∆̂−1 is sufficiently small, it implies that the pro-

8The exact details are contained in Weber (2011a).
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ductivity shifter ∆t is zero to the first order.

G.6 Final good firm

The final good firm buys intermediate goods on the market, produces aggregate output Yt, and

sells aggregate output to consumer, investors, and the government in a perfectly competitive

product market. The final good firm solves:

min
Yjt

∫ 1

0
PjtYjtdj s.t. Yt =

(∫ 1

0
Y

θ−1
θ

jt di

) θ
θ−1

The final good firm’s cost-minimal price level and its product demand function are:

Pt =

(∫ 1

0
P 1−θ
jt di

) 1
1−θ

, Yjt =

(
Pjt
Pt

)−θ
Yt . (G.10)

Zero profits require that PtYt =
∫ 1

0 PjtYjtdj.

G.7 Household

Household i ∈ [0, 1] maximizes discounted expected lifetime utility:

max
{Zit,Bt,Xt,Kt,Wit,Ct}∞t=0

E0

∞∑
t=0

βt [u(Ct, ξ
c
t )− h(Lit)] , 0 < β < 1 . (G.11)

The flow budget constraint and capital accumulation are:

Et[Ωt,t+1Zit+1] +Bt + Pt(Ct +Xt) = Zit + (1 + it−1)Bt−1 (G.12)

+ Ptr
K
t Kt−1 + (1− τL)WitLit + Tt +Dt

Kt = (1− δK)Kt−1 + εXt [1− S(Xt/Xt−1)]Xt . (G.13)

Variable Zit denotes household holdings of one-period state-contingent nominal assets. House-

hold preferences over intermediate products j are Ct = (
∫ 1

0 C
θ−1
θ

jt dj)
θ
θ−1 , with θ > 1. House-

hold demand for product j is Cjt/Ct = (Pjt/Pt)
−θ and the cost-minimal price of Ct corre-

sponds to Pt defined in equation (G.10). Terminal conditions (not shown) require household

solvency. I employ the following function forms:

u(C, ξc) =
C1−1/σ(ξc)−1/σ − 1

1− 1/σ
, h(L) = η

L1+ν

1 + ν
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The shock ξc equals unity in steady state.

G.8 Government

Government consumption qt is exogenous and is the same bundle of individual products j as

Ct. The government budget constraint is (1 + it−1)Bt−1 + Tt + Ptqt ≤ Bt + τL
∫ 1

0 WitLit di.

The government issues a riskless one-period bond Bt and collects labor taxes τL. Government

expenses consist of debt service (1 + it−1)Bt−1, consumption expenditure Ptqt, and transfers

Tt to households. Government income consists of new debt Bt and income from taxing labor.

Terminal conditions (not shown) require government solvency. The government controls the

nominal interest rate it.

G.9 Intertemporal optimality conditions of the household

Denote with λKt the multiplier on the capital accumulation constraint (G.13), and define

Tobin’s Q as Θt = λKt /(Ptλt). Deriving the optimality conditions to the household problem

and rearranging them yields:

Ωt,t+1 =β
uc(Ct+1, ξ

c
t+1)

uc(Ct, ξct )

Pt
Pt+1

(1 + it)
−1 =βEt

uc(Ct+1, ξ
c
t+1)

uc(Ct, ξct )

Pt
Pt+1

Θt =βEt
uc(Ct+1, ξ

c
t+1)

uc(Ct, ξct )
[rKt+1 + Θt+1(1− δK)]

1 =Θtε
X
t

[
1− S(Xt/Xt−1)− S′(Xt/Xt−1)

Xt

Xt−1

]
+ βEt

uc(Ct+1, ξ
c
t+1)

uc(Ct, ξct )
Θt+1ε

X
t+1S

′(Xt+1/Xt)

(
Xt+1

Xt

)2

Kt = (1− δK)Kt−1 + εXt [1− S(Xt/Xt−1)]Xt .

(G.14)
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In steady state, obtain:

1 + i = π/β

1 = β[rK + (1− δK)]

Θ = 1

X = [1− (1− δk)]K .

Calculate the optimality conditions accurate to the first order and define gt = −ξ̂ct to obtain:

Ĉt − gt = Et(Ĉt+1 − gt+1)− σ(̂it − Etπ̂t+1)

Θ̂t = −σ−1Et(Ĉt+1 − gt+1) + σ−1(Ĉt − gt) +
rK

rK + (1− δK)
Etr̂

K
t+1 +

1− δK
rK + (1− δK)

EtΘ̂t+1

(1 + β)X̂t = X̂t−1 + βEtX̂t+1 +
1

S′′
Θ̂t +

1

S′′
ε̂Xt

K̂t = (1− δK)K̂t−1 + [1− (1− δK)]ε̂Xt + [1− (1− δK)]X̂t .

G.10 Labor firm and wage setting of the household

Household i is a monopolistic supplier of its labor service Lit. It sells this service to a repre-

sentative and competitive labor firm.

G.10.1 Labor firm

The labor firm transforms labor services Lit into composite labor Lt by the technology:

Lt =

(∫ 1

0
L
θw−1
θw

it di

) θw
θw−1

, θw > 1 .

Minimizing costs
∫ 1

0 WitLit di over all Lit and subject to the aggregation technology yields

the demand function for the labor service of household i, Lit = (Wit/Wt)
−θw Lt. Aggregation

yields that the average wage Wt is equal to the following wage index:

Wt =

(∫ 1

0
W 1−θw
it di

) 1
1−θw

.

The zero-profit condition implies that WtLt =
∫ 1

0 WitLitdi.
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G.10.2 Wage setting of the household

The wage setting mechanism is similar to Smets and Wouters (2003). The household i sets

the nominal wage W ?
it for its specialized labor service Lit in order to maximize its lifetime

utility:

max
W ?
it

Et

∞∑
s=0

(αwβ)s [· · · − h(Lit+s)] (G.15)

The household accounts for the fact that it can adjust its wage only with probability αw in

future periods. The dots indicate the consumption component of lifetime utility that does not

influence wage setting. Utility maximization with respect to the nominal wage W ?
it is subject

to the budget constraint (G.12), to the labor firm’s demand for household i’s labor service,

and to wage indexation to aggregate steady state inflation, respectively:

. . . = . . . (1− τL)Wit+sLit+s

Lit+s = (Wit+s/Wt+s)
−θw Lt+s

Wit+s = πsW ?
it .

The dots indicate the components of the budget constraint that do not influence wage setting.

Deriving the optimality condition and rearranging it yields the wage setting equation:

(w?t )
1+νθw =

θwη

(θw − 1)(1− τL)

Et
∑∞

s=0(αwβ)sLt+sw
θw(ν+1)
t+s (Pt+s/(Ptπ

s))θw(ν+1) Lνt+s

Et
∑∞

s=0(αwβ)sLt+sw
θw
t+s (Pt+s/(Ptπs))

θw−1 (Ct+sξct+s)−1/σ
.

(G.16)

The optimal real wage is defined as w?t = W ?
t /Pt. The right-hand side is independent of the

household index i. Therefore, all reoptimizing households choose the same optimal wage. In

steady state, obtain:

(w?)1+νθw =
θwη

(θw − 1)(1− τL)
wνθwLνC1/σ .
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In G.10.3, I show that the wage index implies w = w? in steady state. Accordingly, obtain

for the wage setting equation in steady state:

w =
θwη

(θw − 1)(1− τL)
LνC1/σ .

G.10.3 Wage index and wage setting equation

Exploit the fact that all reoptimizing households choose the same optimal wage rate in order

to rearrange the wage index W 1−θw
t =

∫ 1
0 W

1−θw
it di according to:

w1−θw
t = (1− αw) (w?t )

1−θw + αwπ
1−θwπθw−1

t w1−θw
t−1 .

This equation yields that w = w? in the steady state. Calculating the wage index to the first

order yields:

ŵt = (1− αw)ŵ?t + αw(ŵt−1 − π̂t) . (G.17)

Combine this approximate wage index with the wage setting equation (G.16) calculated to

the first order. This yields the equation that describes the evolution of the average real wage:

ŵt =
1

1 + β
(ŵt−1 − π̂t)−

(1− αw)(1− αwβ)

αw(1 + β)(1 + νθw)
µ̂wt +

β

1 + β
Et[ŵt+1 + π̂t+1]

µ̂wt = ŵt − [νL̂t + σ−1(Ĉt − gt)] .

G.11 Market clearing conditions and resource constraints

Aggregating the households’ budget constraints across households and imposing stock market

clearing at
∫ 1

0 Zitdi = 0 yields:

Bt + Pt(Ct +Xt) = (1 + it−1)Bt−1 + Ptr
K
t Kt−1 + (1− τL)

∫ 1

0
WitLitdi+ Tt +Dt .

Consolidate this budget constraint with the government budget constraint and employ the

zero-profit condition of the labor firm to obtain:

Pt(Ct +Xt + qt) = Ptr
K
t Kt−1 +WtLt +Dt
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Aggregating profits in the intermediate goods sector yields:

Dt =

∫ 1

0
Djt dj = PtYt −Wt

∫ 1

0
Ljt dj − PtrKt

∫ 1

0
Kjt−1 dj .

Capital market clearing requires thatKt−1 =
∫ 1

0 Kjt−1 dj. Regarding labor services, household

i supplies service Lit to the labor firm. The labor firm aggregates all imperfectly substitutable

labor services Lit to Lt. Aggregated labor Lt is sold to intermediate good firms, and market

clearing on the labor market between the labor firm and the intermediate good firms requires

that Lt =
∫ 1

0 Ljt dj. Plug capital market clearing and labor market clearing and aggregate

profits of intermediate firms into the consolidated budget constraint to obtain the aggregate

resource constraint:

Yt = Ct +Xt + qt .

Calculating it to the first order yields, with sc = c/y, sx = x/y, sq = q/y:

Ŷt = scĈt + sxX̂t + sq q̂t . (G.18)

H Solution of the firm-specific productivity model

This appendix provides details on solving the firm-specific productivity (FIP) model, derived

in Appendix G. The nonlinear FIP model comprises the equations (G.1), (G.2), (G.5), (G.7),

(G.8), (G.9), (G.14), (G.16), (G.17), and (G.18) plus a specification of monetary policy.

H.1 Steady state

From these equations, I compute the great ratios sc and sx in the steady state with π = g.

Variables without a time subscript denote steady state values. The following variables were
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already determined before:

p? = ng
1
θ−1

∆ = ng(p
?)−θ

mc? = θ−1
θ p?

rk = 1/β − (1− δk)

i = π/β − 1

Θ = 1 .

Now solve for the great ratios sx and sc as follows. Marginal costs of a new firm imply:

(w/rK)1/χ = mc?(rK)−1Ξ−1A1/χ .

All variables on the right-hand side are known. The optimal input mix implies:

(K/L)1/χ =

(
1− 1/χ

1/χ

)1/χ

(w/rK)1/χ .

Aggregate technology implies:

Y/K = ∆−1A1/χ (K/L)−1/χ .

The investment equation implies determines the investment share of output:

sx = X/Y

= [1− (1− δK)]K/Y .

The share sq of government spending over output is calibrated. Thus, aggregate accounting

yields:

sc = 1− sx − sq .

H.2 Linearized model

There are 12 endogenous variables, Y,C,X,K,L, i, π,Θ, rK , w,mc?, µw, and there are 12

equations in the linearized model. I add ad hoc a cost push shock ut to the NKPC, a wage

markup shock uwt to the wage equation, and a monetary policy shock µt to the interest
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rate rule. Thus, there are seven exogenous shocks: u, uw, a, g, q, εX , µ. These are the same

seven shocks that are also employed in Smets and Wouters (2007). Exogenous shocks follow

AR(1) processes. For the calibration of parameters, see Section 7.4 in Weber (2011b). The

12 linearized equations are:

Ĉt − gt = Et(Ĉt+1 − gt+1)− σ(̂it − Etπ̂t+1)

Θ̂t = −σ−1Et(Ĉt+1 − gt+1) + σ−1(Ĉt − gt) +
rK

rK + (1− δK)
Etr̂

K
t+1 +

1− δK
rK + (1− δK)

EtΘ̂t+1

(1 + β)X̂t = X̂t−1 + βEtX̂t+1 +
1

S′′
Θ̂t +

1

S′′
ε̂Xt

K̂t = (1− δK)K̂t−1 + [1− (1− δK)]ε̂Xt + [1− (1− δK)]X̂t

(1 + β)ŵt = ŵt−1 − π̂t −
(1− αw)(1− αwβ)

αw(1 + νθw)
µ̂wt + βEt[ŵt+1 + π̂t+1] + uwt

µ̂wt = ŵt − [νL̂t + σ−1(Ĉt − gt)]

π̂t =
(1− κg(θ−1))(1− κβgθ−1)

κg(θ−1)
m̂c?t + βEt[π̂t+1] + ut

m̂c?t = (1/χ)(ŵt − at) + (1− 1/χ)r̂Kt

r̂Kt + K̂t−1 = ŵt + L̂t

Ŷt = scĈt + sxX̂t + sq q̂t

Ŷt = at + (1/χ)L̂t + (1− 1/χ)K̂t−1

ît = φi1ît−1 + φππ̂t + φY Ŷt + φmπ π̂
m
t + φmY Ŷ

m
t + µt
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H.3 Measurement equations

Proposition 7 in Weber (2011b) establishes that π̂mt = aρ(L)π̂t for the FIP model. The lag

polynomial aρ(L) is described in terms of primitive parameters in Proposition 7. Moreover,

Proposition 8 in Weber (2011b) establishes that P̂t − P̂mt,t−1 = bρ(L)π̂t. The lag polynomial

bρ(L) is described in terms of primitive parameters in Proposition 8. Measured output is

defined as Ŷ m
t = Ŷt + P̂t − P̂mt,t−1. Define the auxiliary variable PDt = P̂t − P̂mt,t−1 to bring

the lag polynomials into a recursive form:

π̂mt = κγρπ̂mt−1 +

(
1− α
1− κρ

)
(π̂t − (1− δ)κγρ2π̂t−1)

Ŷ m
t = Ŷt + PDt

PDt =
α(1− (1− δ)ρ)

1− κρ π̂t + κγρPDt−1 .

(H.1)

When mapping the model to the data, I also account for the fact that, in order to obtain

the real wage, the nominal wage rate in the data is denominated by the measured price level.

Accordingly, define the measured real wage as wmt = Wt/P
m
t,t−1 and rearrange this definition

as wmt = wtPt/P
m
t,t−1. Calculated to the first order, obtain ŵmt = ŵt + bρ(L)π̂t. Analog to

measured output, rearrange the measured real wage according to:

ŵmt = ŵt + PDt . (H.2)

Measurement implies that the four measured variables π̂mt , Ŷ
m
t , PDt, ŵ

m
t and the four mea-

surement equations (H.1) and (H.2) must be added to the linearized model that is summarized

in Appendix H.2.
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