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1 Introduction and Existing Literature

The global �nancial crisis (GFC) in 2007/08 moved interbank networks into
the focus of academia, since the linkages created by liabilities among banks
and other �nancial institutions played a crucial role and yet are poorly un-
derstood. An intriguing example is the bankruptcy of Lehman in September
2008, where the immense e�ects on the system as a whole were dramati-
cally underestimated by the authorities. As a consequence, investigations of
complex systems in terms of their network properties gain more and more at-
tention in economics following the lead of other disciplines in which network
analyses have already a long tradition. One remarkable �nding is that many
complex1 real world networks share some apparently universal features.2 A
prominent example is a highly skewed degree distribution, where the degree
of a node is the number of (incoming/outgoing) links.3

This paper focuses on the relationship between the degree distribution
and another aspect of the network topology, namely the concept of degree
assortativity, which measures whether nodes prefer links to other nodes with
similar degree. The main �nding in the network literature in this respect is
that social networks tend to be assortative, meaning that low (high) degree
nodes form links to other low (high) degree nodes (Newman, 2002, 2003).
König et al. (2010) argue that capacity constraints in social networks lead to
assortative networks and introduce a network formation algorithm taking this
into account. A counterexample to this rule of assortativity of social networks
is reported by Holme et al. (2004). They �nd disassortativity together
with a skewed degree distribution in an internet dating community which,
thus, appears to share some characteristics with networks constructed from
interbank credit relations. On the other hand, technological and biological
networks tend to be disassortative. Economic networks can be seen as a
hybrid case sharing features of both depending on the context (Jackson,
2008). The question to which class the banking network belongs in this
respect is crucial, since the stability of the whole network is a�ected by it. For
instance, Newman (2003) found that assortative networks are more resilient,
whereas disassortative networks are particularly vulnerable against directed
attacks on high degree nodes (hubs). In the existing empirical literature
Soramäki et al. (2006) for the Fedwire payments network, Bech and Atalay
(2010) for the Federal funds network and Iori et al. (2008) for the Italian
overnight money market �nd banking networks to be disassortative.

1Complex in this regard refers to the fact that the networks are neither purely random
nor regular.

2See e.g. Reka and Barabási (2002).
3See e.g. Newman (2010), ch. 8.
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This paper takes as its empirical starting point interbank networks de-
rived from the credit extended via the e-MID (electronic market for interbank
deposits) trading platform for overnight loans from 1999 to 2010, which is
a privately owned Italian company and currently the only electronic broker
market for interbank deposits. The focus of the analysis will be on Ital-
ian banks, since the participation of foreign banks in the e-MID had been
very volatile and ceased almost completely after 2008. Our results support
the earlier �ndings that banking networks are disassortative and this result
is true for the directed and the undirected case.4 The strongest result for
the directed case is that banks with a high in-degree tend to have links to
banks with a small out-degree, which holds also for the out-in case but to a
lesser degree. This robust �nding of interbank networks to be disassortative
emphasizes the importance to identify the so-called `systemically important'
banks, which would adversely a�ect large parts of the network in case of their
failure. For instance, Craig and von Peter (2010) and Fricke and Lux (2012)
estimated a core-periphery model for the German and the Italian interbank
network to identify these important components.

However, the �nding of interbank networks to be scale-free (SF) and dis-
assortative at the same time are hard to combine with the analytical results
of Newman (2002), showing that SF networks (based on the preferential at-
tachment, or PA, algorithm from Barabasi and Albert, 1999) with a typical
scaling exponent of α = 3 are unassortative, i.e. neither assortative nor disas-
sortative, at least in the limit of very large networks. Therefore, the evidence
for a SF distribution together with disassortativity motivates our investiga-
tion of whether SF networks are unassortative in general or only for speci�c
parametrizations, and whether the results are di�erent for a �nite size of the
network. Monte-Carlo simulations show that Erdös-Renyi (ER) (1959) ran-
dom networks are unassortative, independent of the system parameters. In
contrast, SF random networks with relatively small scaling exponents tend
to be disassortative. However, the degree of dissasortativity is still stronger
for the observed networks than for SF networks with the scaling exponent of
2.3 reported in the literature. Another �nding is that even small changes in
the scaling exponent can lead to substantially di�erent mixing patterns.

The remaining part of this paper is organized as follows. Section 2 gives a
brief introduction into interbank networks. Section 3 introduces the data set
obtained from the e-MID trading system. Section 4 presents the empirical
analysis of the observed networks. Section 5 contrasts this with Monte-Carlo
simulations of various generating mechanisms for SF networks and section 6

4Directed networks take the direction of the liability into account and therefore links
do not have to be mutual.
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concludes.

2 Networks

A network consists of a set of N nodes that are connected by M edges
(links). Taking each bank as a node and the interbank positions between
them as links, the interbank network can be represented as a square matrix
of dimension N×N (data matrix, denoted D). An element dij of this matrix
represents a gross interbank claim, the total value of credit extended by bank
i to bank j within a certain period. The size of dij can thus be seen as a
measure of link intensity. Row (column) i shows bank i's interbank claims
(liabilities) towards all other banks. The diagonal elements dii are zero, since
a bank will not trade with itself.5 O�-diagonal elements are positive in the
presence of a link and zero otherwise.

Interbank data usually give rise to directed, sparse and valued networks.6

However, much of the extant network research ignores the last aspect by
focusing on binary adjacency matrices only. An adjacency matrix A contains
elements aij equal to 1, if there is a directed link from bank i to j and 0
otherwise. Since the network is directed, both A and D are asymmetric in
general.

The degree of a node gives the total number of links that a bank has
with all other banks and can thus be seen as a measure for the importance of
individual nodes. Undirected networks imply symmetric adjacency matrices.
In this case bank i's total degree ki is simply the number of relationships
bank i has with other banks, i.e.

ki =
∑
j 6=i

auij. (1)

For directed networks, we di�erentiate between incoming links (bank i bor-
rows money from other banks) and outgoing links (i lends money to other
banks), and de�ne the in- and out-degree of i (kini and kouti ) as

kini =
∑
j 6=i

aji

kouti =
∑
j 6=i

aij,
(2)

5This is of course only true when taking banks as consolidated entities.
6Directed means that dij 6= dji in general. Sparse means that at any point in time the

number of links is only a small fraction of the N(N −1) possible links. Valued means that
interbank claims are reported in monetary values as opposed to 1 or 0 in the presence or
absence of a claim, respectively.
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respectively. In our case the diagonal elements are zero, so in- and out-degree
can be calculated by simply taking column- and row-sums of the adjacency
matrix, respectively.

As usual, some data aggregation is necessary to represent the system as a
network. In the following, we de�ne interbank networks by aggregating over
daily as well as quarterly lending activity.

3 The Italian Interbank Market (e-MID)

The Italian electronic market for interbank deposits (e-MID) is a screen-
based platform for trading of unsecured money-market deposits in Euros, US-
Dollars, Pound Sterling, and Zloty operating in Milan through e-MID SpA.7

The market is fully centralized and very liquid; in 2006 e-MID accounted
for 17% of total turnover in the unsecured money market in the Euro area.
Average daily trading volumes were 24.2 bn Euro in 2006, 22.4 bn Euro in
2007 and dropped to only 14 bn Euro in 2008 as a consequence of the �nancial
crisis. We should mention that researchers from the European Central Bank
have repeatedly stated that the e-MID data is representative for the interbank
overnight activity, cf. Beaupain and Durré (2012).

Detailed descriptions of the market and the corresponding network prop-
erties can be found in Finger et al. (2012).8 In this paper we used all reg-
istered trades in Euro in the period from January 1999 to December 2010.
For each trade we know the banks' ID numbers (not the names), their rela-
tive position (aggressor and quoter), the maturity and the transaction type
(buy or sell). The majority of trades is conducted overnight and due to the
GFC markets for longer maturities essentially dried up. We will focus on the
overnight trades conducted on the platform. From these we take the trades
conducted within the subset of Italian banks as foreign banks withdrew more
or less completely from this market after 2008. Another reason to focus on
the subnetwork formed by Italian banks only is that they are likely to use
the e-MID market as their main source of funding over the entire period and
are in general more homogenous. This leaves a total number of 1,215,759
trades.

A network is de�ned in the following by the binary adjacency matrix
obtained from quarterly aggregated data, i.e. a link exists if at least one
transaction has been taking place between the banks i and j within a quarter
(the number of transaction or their volume would de�ne the entries of a
valued network data matrix). Aggregation of quarterly data had been chosen

7The vast majority of trades (roughly 95%) is conducted in Euro.
8See also the e-MID website http://www.e-mid.it/.
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because many existing links might be dormant at higher frequencies, while
for even higher levels of time aggregation structural changes of the network
(entry and exit of participants) might interfere with the requirement of a
stable structure. Finger et al. (2012) indeed show that a certain saturation
of the density and stabilization of the structure happens at our chosen level
of aggregation.

4 Assortativity Patterns in the Interbank Mar-

ket

The concept of assortativity is concerned with the similarity, in terms of
some attribute, of connected nodes. Here we are interested in assortative
mixing by degree, i.e. how similar the degrees of connected nodes are. A
network shows assortative mixing, if high-degree nodes tend to have many
connections with other high-degree nodes. There exist several measures of
assortativity in the literature. In the following we de�ne the assortativity
coe�cient r as the Pearson correlation coe�cient of degree between pairs
of linked nodes, see Newman (2002). Hence, positive values of r indicate a
correlation between nodes of similar degree, while negative values indicate
relationships between nodes of di�erent degrees. Thus, r lies between -1 and
1, with r = 1 (r = −1) corresponding to perfectly assortative (disassortative)
mixing patterns. The assortativity coe�cient is most often reported for the
undirected version of a network. Empirically, social networks tend to display
assortative mixing patterns, while technological and biological networks are
usually characterized by disassortative mixing patterns. Interbank networks
have been reported to display disassortative mixing patterns as well, so in
this respect they are closer to most technological and biological networks
than to most social networks.9

Figure 1 indicates that the Italian interbank network indeed displays dis-
assortative mixing patterns, since we �nd negative values for r over the com-
plete sample period (blue line). Note the positive trend in the coe�cient over
time indicates that the network evolves into a more unassortative state over
time. It is not quite clear why this is the case.

We also calculated the assortativity coe�cient for the directed version of
the Italian interbank network.10 The calculation works as follows: consider
for example, the case where we want to calculate the assortativity coe�cient
for the combination of in- and out-degree of connected nodes (In-Out). For

9See Soramäki et al. (2006), Bech and Atalay (2010), and Iori et al. (2008).
10See Newman (2002) and Piraveenan et al. (2010) as well.
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Figure 1: Assortativity coe�cient r of observed (blue) and random net-
works for ER (green), and SF networks (red) for the undirected
version of the network over time. The densities in the SF and ran-
dom networks match the observed ones for the network of Italian
banks. A scaling exponent of 2.3 was used for the in- and out-
degrees in the SF networks. Results for random and SF networks
are the average of 100 simulations.

each link we collect the in-degree for the source node and the out-degree of
the target node, and then calculate the correlation between the two vectors.
Figure 2 shows that the �ndings are comparable to the undirected case.
For example, for the assortativity coe�cient for the In-Out case, we see
negative values for the complete sample period. Thus, it is likely for a bank
with high in-degree to have outgoing links to nodes with small out-degree.
Similarly, the values for the Out-In case are also negative over the complete
sample period, albeit on a signi�cantly smaller absolute level closer to the
unassortative case. Thus, a bank with high out-degree may have banks of any
kind of in-degree as counterparty. These �ndings are in line with the results
in Fricke and Lux (2012), where the Italian interbank market is shown to
display a hierarchical core-periphery structure. The set of highly connected
core banks tends to lend money to other core banks and a large number of
loosely connected periphery banks, which in turn tend to lend money to a
small number of selected core banks, but appear to trade relatively scarcely
among themselves. The large (absolute) values of the In-Out combination
are thus an indicator of core banks (who have high in-degrees in general),
to lend money to a large number of periphery banks (who have small out-
degrees in general). The same is true for the Out-In combination, but on
a smaller scale, given that core banks' out-degrees tend to exceed their in-
degrees. The results for the In-In and Out-Out combinations are less clear,
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since both coe�cients are close to zero over the complete sample period.
The Out-Out combination even shows positive values for most of the sample
period. Here we should keep in mind the small (at times even negative)
correlation between single banks' in- and out-degrees. Thus, a bank with a
high in-degree does not necessarily have a high out-degree, and vice versa.
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Figure 2: Assortativity coe�cient over time for the directed version of the
network using Italian banks only.

Overall, these �ndings indicate that high-degree banks tend to connect to
low-degree banks and vice versa (with a certain tendency towards less disas-
sortative mixing over time). This �nding can be seen as an indicator of the
tiered structure of the interbank market11 and is also useful for understanding
the spread of contagion in the interbank network.12

5 Assortativity in Finite-Size Scale-Free Net-

works

Interestingly, Newman (2002) shows that both ER networks and SF networks
(based on the Barabasi-Albert, 1999, PA mechanism, i.e. with tail parameter
of 3) are unassortative for large network sizes, i.e. display no correlation
between the degrees of connected nodes. Since interbank networks were
reported to display smaller scaling parameters (typically around 2.3), we

11See Fricke and Lux (2012).
12In assortative networks, diseases targeting high-degree individuals are likely to spread

to other high-degree nodes. In disassortative networks, speci�cally targeted vaccination
strategies for high-degree nodes can quickly stop the epidemic in the network.
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checked the assortativity of synthetic SF networks in a Monte-Carlo exercise.
For this purpose, we generated (directed) SF random networks using the
algorithm of Goh et al. (2001), which allows to choose N , M , and the
scaling exponent(s) α freely. We should note that this algorithm belongs to
the class of static SF networks, working as follows: each of the N vertices is
indexed by an integer value i (i = 1, · · · , N). For each node we assign two
weights, pi = i−γout and qi = i−γin to each vertex for outgoing and incoming
edges, respectively. The control parameters γout and γin are in the interval
[0, 1). At each leg, we select two vertices with probability pi/

∑
k pk and

qj/
∑

k qk, and a link from i to j is added (ignoring self-links and multiple
links). This repeats until the network has the desired number of links. Goh
et al. (2001) show that the out- and in-degrees are power-law distributed
with parameters αout = (1 + γout)/γout and αin = (1 + γin)/γin. In the
following, we only show results using the same tail exponent for both in- and
out-degrees, i.e. assuming symmetric in- and out-degree distributions such
that αin = αout = α. In a �rst step we compare the disassortativity for the
observed network of Italian banks only with synthetic ER and SF networks.
For each quarter, we take the observed values of N and M , and for the SF
networks we additionally assume a constant α of 2.3.

Figure 1 shows the average results for 100 random networks in each quar-
ter. As expected the ER networks are unassortative, even though the average
r is not exactly equal to zero. Quite interestingly, the SF networks yield rel-
atively constant values for r around -.2 for all quarters. Thus, SF networks
with α = 2.3 are not too di�erent from the observed ones in terms of dis-
assortativity, even though the absolute level of the observed values for r is
somewhat smaller.

Given that we expected the SF networks to be close to the unassorta-
tive state, we performed an additional Monte-Carlo experiment with varying
density and tail exponent (while �xing N = 100), cf. Figure 3. Quite inter-
estingly, we �nd a U-shaped relationship between the assortativity coe�cient
and the density, i.e. r is smallest for intermediate densities. Note that the
minimum is usually found for densities around .2, which is close to the ob-
served density of our quarterly networks. Clearly, a higher density makes
interesting mixing patterns less likely, since most nodes are connected. Simi-
larly, for low densities only few nodes are connected, resulting in small values
for r. Additionally, we �nd that r tends to be positively related to the scaling
exponent, approaching the unassortative state for larger values. However, we
see that the assortativity coe�cient of the synthetic SF networks with α = 3
is not zero in general, indicating that the analytical result of Newman (2002)
is only valid in the limit of very large networks (in particular with densi-
ties around 0.2). We also varied the size of the network, but the �ndings
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are remarkably robust (unreported result).13 This shows that SF networks
may indeed display disassortative mixing patterns, but the extent of their
disassortativity crucially depend both on the density and the exponent.
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Figure 3: Assortativity coe�cient r in scale-free networks with N = 100,
varying both the density and the tail exponent. The plot shows
average results from a Monte-Carlo simulation with 100 runs for
each parameter setting. SF networks were generated using the
algorithm of Goh et al. (2001).

To see how general these �ndings are, we performed a number of robust-
ness checks using alternative algorithms for generating SF networks. From
the class of static SF networks, we used the �tness-based algorithm of De
Masi et al. (2006) and found qualitatively very similar results, cf. Figure
4.14 The major di�erence lies in a somewhat higher level of noise, but the
general shape is very similar. We also checked the results using standard PA
approaches. Typically, PA networks are constructed on the basis of grow-
ing networks, since nodes are added sequentially to the network until it has
the desired size. Each newly added node creates a certain (�xed) number
of links to existing nodes, where high-degree nodes have a higher probabil-
ity of attracting additional links. Here we used the approaches of Barabasi

13We found very similar results using networks with up to 2,500 nodes. The calculations
are computationally too demanding for even larger networks.

14To be precise, we used the probability function P (fi, fj) =
(

fi
fmax

)β1
(

fj
fmax

)β2

, where

f is a `�tness' measure for the individual banks, and fmax is the maximum �tness. We
employed the basic parametrization of Montagna and Lux (in progress), that had been
calibrated to roughly �t the link distribution of the e-MID data. Hence, f follows a power-
law distribution on the interval [5, 100] with scaling exponent 2. The β parameters are
related to the scaling exponents of the degree distributions as follows: αout = (1+ β1)/β1
and αin = (1 + β2)/β2.
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and Albert (1999) and Xie et al. (2008) for constructing the synthetic net-
works.15 We should stress the di�culty in comparing the results to those
from the static SF networks, as the tail exponent typically cannot be varied
in the PA approaches. Still, we �nd that also the PA networks tend to be
disassortative, with r approaching zero for larger densities. In contrast to
the static approaches, we also found the size of the network to play a role
for the structural properties of the growing network models, since larger PA
networks are closer to the unassortative state for any density (unreported).
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Figure 4: Assortativity coe�cient r in scale-free networks with N = 100,
varying both the density and the tail exponent. The plot shows
average results from a Monte-Carlo simulation with 100 runs for
each parameter setting. SF networks were generated using the
�tness-based algorithm, with parameters taken from Montagna
and Lux (in progress). See footnote 14 for details.

To shed light on the underlying structure of the SF networks, Figures 5
and 6 (left) show examples for adjacency matrices of scale-free networks with
α = 2.0 and 3.0, respectively, again based on the Goh et al. (2001) algorithm.
In addition, we show their most assortative (center) and disassortative (right)
counterparts, which were obtained using an adjusted version of the rewiring
algorithm of Xulvi-Brunet and Sokolov (2004) for the case of directed net-
works.16 We should stress that the rewiring algorithm ensures that, besides

15Strictly speaking, the approach of Xie et al. (2008) is not based on growing networks,
but rewires existing links in accordance with PA.

16The basic idea of the algorithm is as follows: we can vary the level of assortativity in
the network by rewiring observed links. At each iteration, we choose two random links
connecting four unique nodes. With a certain probability we change the ends of the nodes,
without changing the sources, to generate assortative or disassortative mixing patterns. In
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keeping the total number of links constant, the original in-degree and out-
degree sequences remain una�ected. For α = 2.0, the left panel of Figure 5
shows a relatively dense core on the top left, which contains the most highly
connected nodes, whereas moving to the bottom right shows a large number
of loosely connected periphery nodes. In contrast, the center panel shows
the most assortative network (after rewiring), where nodes with similar de-
gree tend to form clusters along the main diagonal. Note that this network
displays disassortative mixing patterns due to the high degree nodes that
are connected with practically all other nodes, i.e. also with the low degree
nodes on the bottom right. The right panel shows the most disassortative
case. Again, the highly connected core persists, but the remaining links are
not in clusters along the main diagonal, but rather form a concave shape
starting from the bottom left to the bottom right. Given that the nodes are
sorted by their degrees, this indicates that highly dissimilar nodes are con-
nected to each other. In contrast, Figure 6 shows the results for α = 3.0. In
this case, there are fewer highly connected nodes, which allows to rewire the
links into a truly assortative state (center). The right panel shows the most
disassortative case, leaving only relatively few links among the most highly
connected nodes, but displaying a similar value of r as for α = 2.0. Thus, SF
networks with small scaling exponents will always be disassortative, whereas
this is not necessarily true for larger values of α.
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Figure 5: Network matrix for scale-free networks with N = 100, M =
1, 980, α = 2.0, and di�erent levels of assortativity. Left: scale-
free network, center: most assortative case, right: most unassor-
tative case. Black dots indicate links. Assortativity coe�cient in
brackets.

the former case, we connect the higher degree nodes with each other and similarly for the
lower degree nodes. In the latter case, the node with the two high-degree nodes connect
to the two lower degree nodes. For a su�cient number of iterations and di�erent rewiring
probabilities, this algorithm generates networks with di�erent levels of r.
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Figure 6: Network matrix for scale-free networks with N = 100, M =
1, 980, α = 3.0, and di�erent levels of assortativity. Left: scale-
free network, center: most assortative case, right: most unassor-
tative case. Black dots indicate links. Assortativity coe�cient in
brackets.

Our above experiments have shown that small changes in the tail expo-
nent can lead to substantially di�erent mixing patterns, at least in networks
of �nite size. Fricke and Lux (2013) show that the scaling exponents of the
degree distribution for the Italian interbank network tend to be substan-
tially larger than those considered in this exercise (provided the data are
well described by a power-law at all). With these values (α > 5), however, it
will be impossible to replicate disassortative mixing patterns. In the end, our
�ndings show hardly any evidence in favor of practically all generating mech-
anisms for scale-free networks, including preferential attachment, as possible
underlying models for the Italian interbank network. As this is the most
popular generating mechanism for scale-free networks with power-law degree
distributions, this inability to explain the �nancial network formation with
a single mechanism should also warrant a closer look at the distributional
features of the data.

6 Conclusions

This paper �nds evidence for interbank networks having disassortative mixing
patterns with respect to their degree, i.e. high-degree nodes tend to connect
to low-degree nodes and vice versa. In the case of the Italian interbank mar-
ket this result is true for directed networks and undirected networks over
the whole sample period from 1999-2010. The vulnerability of disassortative
networks to the failure of central nodes motivates us to search for network
formation mechanism that could provide an explanation for the particular
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combination of features we encounter in the interbank data.17 Such gener-
ating mechanisms could then be used for conducting realistic simulations of
contagion e�ects via credit relationships between banks.

Our �nite size Monte-Carlo simulations show that for tail exponents
smaller than α = 3, SF networks become disassortative. The level of dis-
assortativity is in general highly sensitive to changes of the scaling exponent.
In addition, the density a�ects the degree of assortativity, with the strongest
level of disassortativity for densities around .2, which is close to the observed
values of the Italian interbank network. Hence, the frequent �nding of a
power-law distribution of degrees and disassortativity of interbank networks
would be in line with our results. However, it is not clear whether interbank
networks are in fact always characterized by a power-law distribution with
low α. While disassortativity and a low density seem to be uniform features
of all data investigated so far, the power-law distribution of degrees seems
less clear-cut. Findings of high α or inappropriateness of a power-law to de-
scribe the degree distribution (Fricke and Lux, 2013) would both imply that
SF generating mechanisms are not consistent with the structure of interbank
data. For a high scaling coe�cient, known SF generating algorithms would
not be consistent with disassortative behavior, while rejection of a scale-free
distribution of the degrees would invalidate the very statistical foundation of
SF networks. Therefore, our results indicate that new models of interbank
networks formation have to be considered, but for that purpose a more solid
behavioral foundation of the link formation between �nancial institutions is
needed.

17See for more details Basel Committee on Banking Supervision (2011).
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