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Abstract

This paper proposes an approach for estimating the uncertainty associated
with model-based macroeconomic forecasts. We argue that estimated forecast
intervals should account for the uncertainty arising from selecting the spec-
ification of an empirical forecasting model from the sample data. To allow
this uncertainty to be considered systematically, we formalize a model selec-
tion procedure that specifies the lag structure of a model and accounts for
aberrant observations. The procedure can be used to bootstrap the complete
model selection process when estimating forecast intervals. We apply the pro-
cedure to assess the risk of deflationary developments occurring in Germany
over the next four years.

JEL classification: C5, E0, E5

Keywords: model selection, forecasting prediction intervals, bootstrapping,
deflation

1 Introduction
Public perception treats macroeconomic forecasts as exact. It generally fails to ac-
knowledge the uncertainty associated with them. The main reason is most likely
that macroeconomic predictions are commonly given as point forecasts with no guid-
ance of their likely accuracy. While point forecasts may sometimes be adequate,
they should in general be supplemented by prediction intervals that represent the
uncertainty of the forecast and allow taking into account alternative outcomes in-
dicated by the interval (Chatfield 1993). In addition, the probabilities of certain
events of particular interest to the user of the forecast may be stated explicitly,
again to document the degree of imprecision of the prediction and to allow thinking
in alternatives. As an example, a macroeconomic forecast may be supplemented by
an explicit statement on the probability that a recession occurs over the forecast
horizon (Fair 1993).
The uncertainty associated with a model-based forecast is partly inherent to the

general uncertainty of future events, partly it arises from the estimated forecast
model (Ericsson 2001). Clements and Hendry (1998, Chapter 7.3) distinguish five
categories of model-based forecast errors: future changes in the underlying struc-
ture of the economy, misspecification of the model, mis-measurement of the data
in the base period from which forecasting begins, inaccuracies in the estimates of
the model’s parameters, and the cumulation of future disturbances to the model.
∗Corresponding author. Tel: +49-431-8814367, Fax: +49-431-8814525. Email address:

dora.borbely@ifw.uni-kiel.de

1



Although all five types of uncertainty are generally important, only the last two can
be analysed quantitatively and are therefore themselves predictable. The first of
these last two types captures the shocks that can occur to the economy given the
model used for forecasting. The second is usually termed “parameter estimation un-
certainty”, resulting from estimating the model parameters on sample information
instead of using the true population parameters.
However, current practice in macroeconomic forecasting suggests that “parame-

ter estimation uncertainty” often entails more than the imprecision of the forecast
arising from the actual estimation of the parameters. The broad selection of the
forecast method (for instance univariate versus multivariate) and the variables used
for forecasting (in a multivariate context) may well be guided by considerations
that do not depend on the sample data at hand, e.g. by economic theory. Still, the
“best-fitting” model that is ultimately employed for computing predictions is usu-
ally found by a data-based search procedure that possibly compares a large number
of specifications. Given that the wrong model may be selected prior to parameter
estimation and given that the costs, in terms of forecast accuracy, of model mis-
specification may be high, there is also model selection uncertainty in most real
world forecasting problems (Chatfield 1996). Assessing the overall variability of a
model-based macroeconomic forecast, thus, requires accounting for parameter esti-
mation uncertainty as well as for the uncertainty that arises from data-based model
selection.
The present paper works out a procedure that accounts for all three types of

“predictable uncertainties” (Ericsson 2001) in macroeconomic forecasting. In the
first step, a model selection procedure is defined that helps to choose the data-based
specification of the macroeconomic model in a formalized and therefore replicable
way. The procedure combines efficient use of information criteria to select subset
models with additional tests for non-autocorrelation and for the presence of out-
liers to select the final model, thereby merging model selection approaches from
multivariate time-series analysis, such as the general-to-specific principle, with pro-
cedures emphasized in univariate time-series literature such as the need to identify
and model aberrant observations. Having defined a practical forecasting model
guided by economic theory, this model selection procedure is used in the second
step to specify the equations of model in detail. In the final step, point forecasts are
generated form this model conditional on the last observations in the sample and
a bootstrap is employed together with the formalized model selection procedure to
estimate the associated conditional prediction densities that account for all three
types of forecast uncertainties. In addition, event probabilities are estimated for
selected outcomes of particular interest for the question analysed.
The macroeconomic question we apply our procedure to is that of estimating the

risk of deflationary developments in Germany as of early 2003, a question that has
received considerable attention in the public debate in Germany recently. German
consumer price inflation has been lower than the euro area average ever since the
start of the European Monetary Union. The reasons for these differences are mostly
structural in nature, pertaining to a large extend to higher GDP growth in the rest
of the euro area (Balassa-Samuelson effect). Over most of 2002, inflation largely
came to a standstill while at the same time the real economy stagnated and was seen
at the brink of recession by some commentators in early 2003. Against this back-
round, there is widespread concern in policy circles that with a weak economy and a
monetary policy guided to a structurally higher euro area average inflation, there is
a substantial risk of Germany drifting into a deflationary environment not unlikely
to the situation Japan has been struggling to get out again since the late 1990s. As
deflation may indeed be a self-enforcing process that is not easy to escape from once
in, there is in general good reason for policy makers to avoid the economy slipping
into such a situation. That is, he or she may want to minimize the risk of such a
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development occurring. Given this shape of the policy maker’s ‘loss-function’, our
model prediction of the risk of deflation can be the basis for deciding on the use of
policy instruments to reduce that risk. Since there are various sensible definitions
of “deflation”, pertaining to the strength and the length of the fall in the price level
as well as to rest of the macroeconomic environment, we calculate different event
probabilities for each of our definitions.
The remainder of the paper is organized as follows. Section 2 explains the model

selection procedure we employ, outlines the general form of our forecasting model
and gives estimation results. The bootstrap approach we use to estimate conditional
forecast is portrayed, and the estimated predictions and prediction intervals are
presented. Some conclusions are drawn in the final section.

2 The Empirical Approach
Our empirical approach to the problem of generating macroeconomic forecasts and
forecast densities proceeds in three steps. First, we choose the economic variables
of our forecast model on the basis of economic reasoning. Second, we employ a
statistical model selection procedure to specify the model in detail, in particular its
dynamic structure. Finally we generate point forecasts and forecast intervals using
a simulation approach that accounts not only for the usual model uncertainty that
stems from the model being only an approximation to reality but also for sampling
uncertainty arising from parameter estimation and statistical model selection. Note
that simulation of parameter estimation and model selection requires a complete
formalization of all steps involved at this stage. The choice of the economic variables
that enter the model, in contrast, is not formalized and simulated since it is not
based on sample information.1

2.1 The Model Selection Procedure

Having specified the variables that enter the model, we have to select the empir-
ical specification of the model. Essentially this pertains to the question how the
dynamics of the model’s equations should be modelled. In addition, our procedure
addresses the question of how to identify aberrant observations. As aberrant obser-
vations can distort model selection, but the identification of outliers also depends
on having chosen the correct model, model selection and outlier detection proceed
jointly in an iterative procedure.

2.1.1 Selecting the lag structure

A possible approach to select the lag structure of a model is to choose the model
that minimizes some information criterion such as BIC or AIC. However, the com-
putational effort of this approach is substantial because when there are N potential
coefficients in the model, 2N models have to be compared. Hansen (1999) pro-
poses a short-cut to the full evaluation of 2N models, consisting of eliminating
all coefficients in question on the basis of their empirical t-ratios until only 10 re-
main; among these last 10 coefficients it is computationally feasible to conduct a
full search procedure that allows to select the model that is optimal according to
some information criterion. However, even this final full search can be substituted
by a computationally more efficient sequential elimination based on the lowest t-
ratios since, as is shown by Brüggemann and Lütkepohl (2001), this is equivalent to

1Clearly, if the choice of variables used is also based on statistical arguments, this would have
to be accounted for. A way to assess the uncertainty arising from such a ‘data mining’ process via
bootstrapping has recently been proposed by White (2000).
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sequentially eliminating coefficients based on a model selection criterion provided
that at each step of the elimination process a suitable threshold t-value is used.
The latter depends on the model selection criterion chosen, the sample size and the
number of regressors in the model.
Using this result, we select the dynamic structure of the equations of our model

on the following information criterion-based procedure. As regards the choice of
the information criterion, we follow Hansen (1999) and favour BIC before AIC as it
is consistent. We then choose some maximal lag order, estimate the model with all
lags included and sequentially eliminate the coefficient with the lowest t-ratio until
some upper limit for the t-ratio is reached (which we fix at 5.0) and record the BIC
for each of the models that appeared in reduction process. In principle, the model
with the minimum is our preferred model.
However, we find that the BIC at times selects models that are parameterized

too parsimoniously to capture the full dynamics of the underlying process, as can
be seen from the serial correlation of the estimated residuals. Since the bootstrap
procedure we use for constructing confidence intervals requires serially uncorrelated
residuals and, moreover, since serial correlation may cause parameter estimation
bias and thus poor forecast performance, we augment our criterion-based model
selection with a test for autocorrelation. That is, we select the specification that
minimizes the BIC among all specifications that passed tests for non-autocorrelated
residuals up to the first, the fourth and the eighth order.2

2.1.2 Indentifying aberrant observations

In addition to selecting of the dynamic structure of the model, a decision has to be
made on how to address the problem of aberrant observations. Commonly referred
to as outliers, such observations are quite often encountered in empirical research,
often simply due to the approximate nature of the econometric model (Franses
and Lucas 1998, Krasker et al. 1983). Their treatment is, however, still quite
controversial in multivariate time series analysis. In univariate time-series analysis
and in cross-section analysis, in contrast, there exists a large literature on the effects,
the identification and the treatment of aberrant observations.3 This literature shows
that if not accounted for in a suitable way, outliers can severely distort the model
selection process and cause biases estimates of model parameters and confidence
intervals. Practical time series applications that require good model identification
and forecasting performance, such as procedures for seasonal adjustment, commonly
employ routines to detect outliers to guard against the detrimental effects of the
latter4 . Consequently, we attempt to identify aberrant observations in our model
selection process and neutralize their influence.
Procedures proposed in the literature to identify outliers commonly rely on as-

sessing the influence of a particular observation by dropping it from the sample and
checking whether the change in the model’s fit at that observation is large. The first
of the two approaches we use is to sequentially search the sample for a ‘studentized
residual’, which is the empirical t-ratio of a dummy that takes the value 1 at the
respective observation and 0 otherwise.5 Following the strategy proposed by Chen
and Lui (1993) for univariate models, we calculate the absolute studentized residual
for all possible data points, choose the date where it reaches its maximum as the

2Kilian (2001) in a simulation study also finds the BIC to select models that are too tightly
parameterized to account for higher order dynamics. He advocates using the AIC instead of the
BIC. He does not consider combining information criteria and tests for autocorrelation, though.

3 See Krasker and Welsh (1983) for a survey,and Franses (1998) and Maddala (1992) for textbook
discussions.

4As an example, see Findley et al. (1998) for a describtion of the procedure used in the X-12-
ARIMA routine of Bureau of Census.

5 See Franses (1998, Chapter 6 and Maddala (1992, Chapter 12) for textbook expositions.
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location of a potential outlier and use some critical value to decide on its statistical
significance. In case the null hypothesis of no outlier is rejected, the respective
observation is modelled by an impulse dummy and we repeat our search — until no
more outlier is found. As critical value we chose to take 2.7, following the simulation
evidence in Chen and Lui (1993).6

The iterative procedure just described will generally identify so-called innovation
outliers in the dependent variable of an equation. To identify observations in the
regressor set that are outside the majority of the observed data in the context of the
model (Krasker et al. 1983, p. 661) a measure referred to as dfits has been proposed
which like the studentized residual is a measure of the difference the fitted value
of the dependent variable due to dropping the observation in question (see Belsley,
Kuh and Welsch (1980) and Maddala (1992), Chapter 12).We follow Krasker et al.
(1983) in using a critical value of 3

p
p/T , where p is the number of parameters

in the model and T the number of observations, to identify a significant outlier.
Again, we model an identified aberrant observation by an impulse dummy.
Since aberrant observations can distort model selection, but the identification of

outliers also depends on having chosen the correct model, model selection and outlier
detection have to proceed jointly in an iterative procedure (Chen and Lui 1993).
We start our model selection process with an unrestricted equation containing all
regressors up to the pre-specified maximum lag order. We subject this equation to
our two outlier detection tests and model identified outliers by impulse dummies.
The resulting, possibly dummy-augmented, equation is simplified by eliminating
coefficients on the basis of the lowest t-ratios and selecting the specification the one
with the lowest BIC among all specifications with serially independent residuals.
The resulting specification is then used for a second round of outlier detection tests.
In case no more aberrant observations are encountered, the specification found in
the previous step is the preferred specification, otherwise the equation is augmented
by additional impulse dummies and the BIC-based simplification procedure starts
again from the most general specification until the final specification is found. This
specification is used for forecasting.

2.2 Estimating Prediction Intervals

Given the paramter estimates of our simple five-variable system of equations, it
is straightforward to calculate point forecasts for the variables of interest such as
GDP, the output gap and, notably, the rate of inflation. These point forecasts are,
however, uncertain. As regards the case of deflation this means that even though
the model’s point forecast may be that there is no fall in the price level in the
forecast period, we may not be able to rule out this possibility completely since the
model’s forecasts may simply not precise enough to allow this.

2.2.1 The bootstrap

To assess the uncertainty associated with the forecasts of our model, we estimate
prediction intervalls using a bootstrap technique. The general idea of this simulation
method is to measure the variability of an estimate obtained from some statistical
procedure by applying the procedure repeatedly to an artifical data set that is
constructed by resampling from the original observations (Efron 1979). In times
series analysis, the resampling is implemented by randomly reordering the time
series of estimated residuals of a regression equation, resulting in artifical data

6Chen and Lui (1993) found for sample sizes up to T = 100 critical values between 2.5 and 3.0
to work well in terms of finding the correct number of aberrant observations.
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with the same stochastic structure as the original sample.7 In case the statistical
procedure to be evaluated is a forecasting model, evaluation of the variability of the
generated forecast commonly proceeds as follows8:estimate the model on the basis
of artifical data, then generate forecasts using the estimated model in conjunction
with artificial ‘future’ disturbances resampled from the original residuals. Repeat
the procedure a number of times and use the resulting distribution of forecasts to
approximate the distribution of the real forecast.
The specific procedure we employ differs from the method just explained only

in that we not only re-estimate given specifications of the model’s equations on the
artificial data at each replication, but apply our complete model selection process
to the data prior to estimation, such that it is possible that in each replication a
different specification is found and used for parameter estimation and forecasting.
This way our procedure accounts for the forecast variability arising from selecting
the model specification from sample information. Failure to take model selection
uncertainty into account would result in estimated confidence bands that were too
narrow and therefore underestimated the true risks associated with a forecast.

2.2.2 Applying the bootstrap

Starting point of our procedure is the vector of the estimated residuals of the k
equations of the model, ε̂t = {ε̂1t, ..., ε̂kt}, t = 1, ..., T , which by virtue of our
model selection procedure is independently and identically distributed. We center
the residuals and follow the convention to rescale all residuals as proposed by Stine
(1987). To generate a bootstrap replicate sample of our data set, we randomly
draw (with replacement) T times from ε̂t, giving us the vector of artificial residuals
ε̂∗t , t = 1, ..., T and then calculate the equations recursively by substituting the
empirical residuals ε̂t by their bootstrap counterparts ε̂

∗
t , using some original sample

data as starting values. Note that since we draw the residuals ε̂t in tandem, the
contemporaneous correlation between them is preseved in the artifical data set.
Next, the dynamics of model’s equations are specified using our model selecting
procedure and the parameters are estimated on the artificial data, giving a new set
of parameter estimates whose variability over the various repetitions accounts for
model specification and parameter estimation uncertainty. Finally, these estimated
parameters are used to generate the forecast in conjunction with a set new set of
‘future’ disturbances drawn from the empirical residuals.
More formally, our bootstrap procedure works as follows9. Let the AR(p) process

zt = ϕ1zt−1 + ... + ϕpzt−p + et, where e is a sequence of iid random disturbances,
represent one of the equations of our model. We estimate the equation on the
original sample data giving us the vector of coefficient estimates ϕ̂ and the empirical
residuals êt . We then generate a bootstrap sample series z∗t by drawing T artifical
disturbances e∗t from the dummy-adjusted, centered and rescaled empirical residuals
and recursively calculating z∗t = ϕ̂1z

∗
t−1+ ...+ ϕ̂pz

∗
t−p+ e∗t for t = p+1, ..., T using

the first p original sample observation as starting values. On this artificial series z∗t
we apply our model selection procedure which identifies some autoregressive model
with parameter vector ϕ̂∗ =

©
ϕ̂∗1, ϕ̂

∗
2, ..., ϕ̂

∗
p∗
ª
, where p∗ may or may not coincide

with p. To generate a forecast for the next h periods, we draw from êt h artificial
future disturbances e∗t for t = T +1, ..., T +h and using this we recrusively calculate
z∗t+h = ϕ̂∗1z∗t+h−1 + ...+ ϕ̂∗1z∗t+h−p + e

∗
t . Repeating this procedure B times gives an

7This residuals-based procedure is termed a nonparametric bootstrap. See Horrowitz (2001)
for a recent general survey on bootstrap methods and Berkowitz and Kilian (2000) for a survey
on the time-series aspects. A non-technical introduction is provided by Brownstone and Valetta
(2001).

8 See Clements and Taylor (2001) for a recent survey on generating forecast densities using
bootstrap methods.

9 See also Clements and Taylor (2001).
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empirical distribution for z∗t+h which is the bootstrap approximation of the unknown
forecast distribution. The quantiles of this distribution define the upper and lower
confidence band around the point forecast. For instance, for B = 1000, the upper
and lower values of a 95% confidence band are found by taking the 975th and 25th

element of the vector of the decreasingly ordered realisations of z∗t+h.
Complications to this standard procedure arise when impulse dummies are used

in the original equations to model aberrant observations. The impulse dummies are
used to reduce the biases in model selection and parameter and confidence band
estimation associated with aberrant observations. However, since the estimated
residual at the observations modelled by a dummy is zero, resampling from that
residual series will in general underestimate the true uncertainty of the forecast.10

To ensure the residual series has the variability it would have without the dummies,
we replace all estimated zero residuals by the coefficient estimates of the associated
dummy variables and, in turn, exclude the impulse dummies from the process used
to generate the artifical data. The modified residual series is then centered and
rescaled and the procedure works as explained above.

2.2.3 Conditional forecast intervals

So far, the procedure estimates prediction intervals conditional on the estimated
parameters and the artificial data used to estimate these parameters. The inter-
valls are therefore close to being unconditional. We are interested, however, in a
forecast interval that is like our point forecast conditioned on the last (p) original
observations of our sample. Thombs and Schucany (1990) propose obtaining con-
ditional forecast intervals using parameter estimates based on artifical data from
t = 1, . . . T − p that is constructed by backcasting taking the last p original obser-
vations of the sample as starting values.
However, Pascual et al. (2001) show that simply conditioning on the past p

observations of the original sample instead of the artificial data in the procedure
explained above gives asymptotically the same results. The idea is that for large
B, the convergence of the bootstrap parameter estimate ϕ̂∗ to the true parameter
ϕ is independent of the artificial data being conditioned on the last p observations,
see Clements and Taylor (2001). Therefore, the parameters can be estimated on a
separate data set, which makes backcasting unnecessary. We therefore rely on this
approach to obtain conditional forecast intervals.

3 Assessing the Risk of Deflation in Germany
According to a common defintion, deflation is a process of falling prices. This may
harm economic growth mainly via two channels (Newman et al. 1992). First, it can
be due to a ‘Fisher effect’: If nominal interest rates do not fall sufficiently to make
up for the (expected) fall in prices, the real interest rate rises and deters investment.
Second, if nominal wages are downwardly sticky while deflation occurs, real wages
will increase and cause employment to fall. In both cases, the problem is that once
the economy is in a deflationary situation, the following fall in demand causes prices
to fall even further, so a reinforcing process, often termed a deflationary spiral, may
unfold. The greatest cyclical deflation occured in the United States between 1929
and 1933, where the fall in the price level reached eight percent per annum over a
four year period. Conventional economic wisdom has it that deflation was a major
10The exemption is when the use of the dummy variable is motivated by structural economic

information rather than statistical testing and the event that triggered the observation to deviate
from the rest of the sample can be excluded to occur again in the forecast period. An example for
such a case in our model is German unification, which causes a break in our real GDP series in
1991 that is modelled with an impulse dummy.
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cause of the Great Depression that occured at that time. More recently, Japan has
been experiencing deflation for a number of years, coupled with poor performance of
the real economy. There is therefore good reason for policy makers to be concerned
about the risk of deflation.
From economic grounds, it may, however, be debatable whether a small negative

“dip” of the consumer price index or even a somewhat more sustained fall in the price
level at low rates (say 0.5 or 1.0 percent) will already trigger a deflationary spiral.
Also, a fall in the price level caused by external influences such as a sharp drop in
the world price of crude oil would generally not be associated with a self-enforcing
deflationary environment since it would not be expected to be permanent and would
moreover increase rather than decrease firm’s profit expectations. In our empirical
application we therefore estimate event probabilities for alternative definitions of
deflationary developments and differentiate between changes in consumer prices
caused by oil price fluctuations and other changes.

3.1 The Empirical Model

We are now ready to start specifying our macroeconomic forecasting model. In the
simplest case, such a model this could be a set of autoregressive equations, more
ambitious are vector autoregressive (VAR) or a dynamic simultaneous equations
models. Our model belongs to the latter class, despite its simple recursive struc-
ture. In setting up the model, we try to strike a balance between good forecast
performance and economic interpretability. The forecasts of the model should not
only be accurate but also reasonable from an economic point of view. This desired
feature guided the choice of variables included in the model and also precluded rely-
ing completely on vector autoregressions. We therefore decide to model the inflation
process in terms of a modified Phillips curve relationship and to give survey-based
economic sentiment indicators a prominent role in forecasting economic activity.

3.1.1 Theoretical considerations

The Phillips Curve is widely regarded as a central tool for forecasting inflation. The
conventional Phillips Curve specifies inflation as negatively dependent on cyclical
unemployment expressed as the deviation of unemployment from its natural rate.
In this paper we use an alternative specification, which describes the positive rela-
tionship between inflation rate and the degree of capacity utilization in an economy.
We use the output gap — measured by the deviation of real GDP from its potential
value — as a dimension of the degree of capital utilisation. This specifiaction is
commonly used, since the output gap and the unemployment gap show directly op-
posed movements in an economy. We find, that the output gap based Phillips Curve
provides better forecasts with smaller mean squared errors than the unemployment
based.11 The Phillips curve specification used in this model is

πt = α(y − ȳ) + ε

where π denotes the percentage change of consumer prices and (y−ȳ) denotes the
output gap. Alternative ways of forecasting inflation would be to use e.g. interest
rate differentials or long run growth rate of monetary aggregates in the Phillips
Curve.
To make the Phillips Curve operational for forecasting inflation, we need an

estimate of the parameter α and a forecast of the output gap (y − ȳ)t over the
forecast horizon. The parameter α can be estimated from a dynamic model for
11Our findings correspond to those found by Stock and Watson 1999.
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πt which includes as regressors lags of (y − ȳ)t and lags of πt. The particular
procedure we use to select the lag structure of the model is explained in the previous
section in greater detail. We augment the empirial specification of this equation by
the contemporanous lagged rates of the rate change of the euro price of crude
oil (UK Brent), because much of the short-run dynamics of inflation in Germany
are associated with changes in energy prices. The euro price of crude oil itself is
modelled as a simple autoregressive process.
Next, need to endogenize (y − ȳ)t. To do so, we need forecasts for real GDP

and for potential output. To forecast GDP we employ survey-based sentiment
indicators. The advantage of these indicators is that they have a close correlation
with GDP, generally with a lead of one or two quarters, and therefore a proven
ability to forecast relatively accurately. We specify a vector autoregressive (VAR)
model for the trend-adjusted logarithm of real GDP, the ifo-business climate –
a survey-based index of business expectations and sentiments which is the most
reliable business cycle indicator in Germany –, and the ISM index, which is the
most important indicator for industrial production in the United States. To obtain
a forecast for potential output, ȳt , we apply the Hodrick-Prescott filter (Hodrick
and Prescott 1980) on our VAR-forecast for real GDP 12.

3.1.2 The equations

In the following we present the results of employing the model selection procedure
outlined above to the five equations we specified on theoretic grounds. We employ
quartely data ranging from 1970:1 to 2002:3 to select the specification and to obtain
estimates of the parameters of the equations. The German data refers to West-
Germany before 1991 and for Germany as a whole thereafter. In constructing the
German data series breaks due to unification have been avoided. In the following
we present the main equations of the model. All variables are estimated by OLS, all
equations are free from autocorrelation up to the eights order. We start with our oil-
price augmented Phillips Curve equation, were application of the above procedure
yields

∆pt = 0.07(y − ȳ)t−1 + 0.00S1 − 0.00S3 + 0.28∆pt−1 (1)

(3.35) (6.52) (−3.15) (5.00)

+0.18∆pt−2 + 0.04∆pt−4 + 0.01∆poilt + ε

(3.37) (6.61) (7.53)

R̄2 = 0.78 T = 114 JB : 0.72

where p stands for logarithm of the consumer price index, (y− ȳ) for the output
gap estimated using the Hodrick-Prescott Filter, poilis the price of cruide oil (UK
Brent), denominated in euros. ∆ denotes first differences and s1 and s3 are seasonal
dummy variables. In addition, our procedure identified three aberrant observations
that are modeled by 0/1-Dummy-Variables in the equation for 74:1, 91:3 and 97:3,
the coefficient estimates of which have been suppressed when presenting the equa-
tion. Adjusted R2 indicates quite good fit for a regression in changes, while the
marginal significance level of the Jarque-Bera test (JB) shows that the residuals of
the equation are normally distributed.
12To reduce the instability of the filter at the end of the forecast horizon, the Hodrick-Prescott-

Filter is calculated on a sample of forecasts for real GDP that reaches 12 quarters beyond our
forecast horizon for the output gap, following Baxter and King 1995.
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Our Phillips Curve forecasts inflation conditional on values for the output gap
and the change in oil prices. To obtain a forecast for the output gap, we need to
specify an equation for real GDP. This raises the question whether real GDP should
be modelled as trend-stationary or difference stationary. Applying the ADF-test
on a time-trend augmented autoregressive equation selected by our model selection
procedure, we can reject the null hypothesis of non-stationarity in favor of the trend-
stationary model. In the following, we therefore model real GDP as trend-stationary.
Next,we include a variable measuring the so-called Business Climate which is a
survey based measure of the assessment of the current economic situtation and the
prospects six months ahead produced monthly by the ifo Institute in Munich. Since
the Business Climate is clearly stationary, it may enter the equation for real GDP
both levels and in first differences, giving the following error-correction model:

∆yt = 0.37− 0.07yt−1 + 0.00t+ 0.00IGt−1 − 0.26∆yt−1 (2)

(2.44)(−2.84) (2.40) (7.02) (−3.69)
+0.16∆yt−4 + 0.00∆IGt − 0.00∆IGt−4 + ε

(2.54) (7.29) (−2.97)

R̄2 = 0.64 n = 107 JB : 0.89

where IG stands for the german business confidence indicator. It has a signifi-
cant influence on real GDP both in levels and in differences. Besides we use some
variables for the following quarters: 74:4, 76:4, 79:2, 84:3; 87:1, 89:1, 91:1, 91.3 and
92:1.
To forecast, in turn, the Business Climate, we specify a bivariate autoregressiv

equation for the Ifo Business Climate by including a variable measuring the US
business climate, which is the ISM index provided by the US national association
of purchasing managers. In employing this additional variable, we account for the
interdependencies between the German and the US business cycles.

∆IGt = 13.45− 0.15IGt−1 + 2.51S1 + 0.57∆IGt−1 + 0.25∆IGt−3 (3)

(5.41)(−5.66) (6.67) (9.74) (4.28)

+0.09∆IUSt−8 + ε

(2.51)

R̄2 = 0.70 n = 104 JB : 0.10

As expected the german business climate indicator enters into the regression
with a negative sign in levels and a positiv sign in differences. This underlines the
typical business cylce movements. The positive sign of the US business climate
indicator is also obvious. It indicates a positive correlation, a comovement, between
the business cycles in the two respective countries. Included 0/1-dummy variables
are: 73:3, 73:4, 74:1, 82:3, 83:1, 84:2, 92:4, 95:1 and 99:3.
The US business climate indicator also has to be endogenized for the model.

The regression yields the following.

∆IUSt = 8.17− 0.15IUSt−1 + 0.45∆IUSt−1 − 0.32∆IUSt−4 (4)

(3.51)(−3.58) (7.22) (−4.88)
−0.23∆IUSt−8 − 0.13∆IUSt−13 + ε

(−3.80) (−2.38)
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R̄2 = 0.67 n = 102 JB : 0.98

Included 0/1-dummy variables are: 73:4, 74:4, 80:2, 80:3, 81:1, 83:1, 91:4, and
2002:1.
Finally, we specify an equation for oil price, which is simply an autoregressive

model specified in first differences:

∆poilt = 0.22∆poilt−1 − 0.14∆poilt−5 + ε (5)

(3.51) (−3.58)

R̄2 = 0.08 n = 110 JB : 0.00

According to the expectations, the fit of the equation is quite poor.

3.2 Results

In the following we present the results of applying our empirical approach to es-
timate forecast uncertainty to the question of assessing the risk of deflation in
Germany as of late 2002. We estimate the above model with data running up to
2002:3 and generate conditional forecasts for the rate of change of the consumer
price index starting in 2002:4. We then apply our bootstrap approach, using 5000
replications in each simulation, to estimate the corresponding conditional density
of the forecast. The result is a probability statement on the development of con-
sumer prices over the forecast horizon that implies a quantification of the risk of
the consumer price level falling by a certain extend.

3.2.1 Forecast intervals

The main findings of our analysis are summarized in figure 1. Reading from left to
right the figure presents the model forecasts for the business confidence indicator,
the output gap, the percentage change of real GDP over the previous year and
the percentage change in consumer prices over the previous year over a horizon of
seventeen quarters. Evidently, the model predicts a rise in business confidence and
a subsequent increase of real GDP growth that peaks in the middle of 2004. The
output gap, which is negative at the start of our forecasting period, will be closed
by then. Given this forecast, for real activity, it is obvious that the mean forecast
of the model does not imply the change in consumer prices to fall below the zero
line in the forecast period.
This forecast is, however, uncertain, as indicated by the prediction interval es-

timated for the forecast. The forecast intervals become quite wide after very few
forecast steps, indicating the limitations of our model for predicting future events.
For instance, as regards the forecast for GDP growth, the upper prediction inter-
val for the first forecast step is already as high as 1.9 percentage points and the
lower interval is -1.6 percentage points. After four forecast steps, these figures have
increased (in absolute value) to 3.2 and -3.4 percentage points, respectively. For
forecasting the rate of inflation, the intervals are somewhat lower, lying at 0.9/-0.8
percentage points for the first step and 2.4/-2.3 for the fourth. The lower bound of
the 95 percent prediction interval for the inflation forecast, thus, very quickly slides
below the zero line. At the 5% significance level, deflation can not be ruled out for
the year of 2003 and the following years.
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Figure 1: Forecasts within a 95% confidence band as a result of a 5000-fold boot-
strapping
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To gain an inside into the probability distribution of the forecast change in
consumer prices, figure 2 displayes the prediction intervals for inflation associated
with different levels of significance. The outermost interval shows the results with
allowing for 5 % probability of error, followed by 10%, 25% and the most tight
interval corresponds to a 50% probability of error. The 5% and 10% intervals
reach the aera with negative growth rate before the end of 2003. At the 25% level,
deflation can nearly be ruled out over the forecast horizon; the associated interval
falls slightly below the zero by the start of 2004 and remains quite close to it until
the end of the forecast horizon. Deflation can completly be expelled only for the
50% level of significance.

3.2.2 Alternative definitions of deflation

As indicated in the brief theoretical motivation above, not every fall in the price
level may be damaging for real economic activity. We therefore need to clarify the
definition of what is regarded as a harmful deflationary development. In order not
have to rely on one specific definition, we use various alternatives and observe them
under varying circumstances.
First, it may be argued that a very small fall of the consumer price level may not

cause much damage, at least not more than a small increase. Since there may be
different views on what is small in this context, we use three definitions according to
which the economy is in a deflation when the change in consumer prices lies either
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Figure 2: 95, 90, 75 and 50% prediction intervals for the percentage change in the
consumer price index
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below 0.0, below -0.5 percent or below -1 percent. Second, a deflation may be a
period of sustained decreases of the price level. Thus, we require negative growth
of consumer price to hold on for at least 2 or 3 quarters in a row, respectively. In
addition, we look at three forecast horizons: until the end of the year 2003, 2004 or
2005.
Combining those definitons results in eighteen different dimensions of what may

be regarded as a deflationary development. To assess the likelihood of these def-
initions to appear over the forecast period, we estimate event probabilities in the
sense of Fair (1993). That is, when running the replications, we record in each
draw whether or not the specified event has occured. The probalitiy of the event is
then simply the number of times it occured devided by the number of replications.
Table 1 provides an overview on how often deflation falling in one of the defined
categories has been predicted by the model, using again 5000 replications of our
bootstrap procedure.

Table 1: Probability of deflation using a 5000-fold bootstrap

<0.0% <-0.5% <-1.0%
until the end of 2003

2 quarters in a row 14.9 7.5 3.4
3 quarters in a row 10.0 4.2 1.6

until the end of 2004
2 quarters in a row 25.7 15.5 8.9
3 quarters in a row 20.8 11.8 6.6

until the end of 2005
2 quarters in a row 33.1 21.4 13.4
3 quarters in a row 27.5 17.4 10.3

The probability of a deflation until the end of 2003 defined as two quarters of
negative change of consumer prices accounts for 14.9 percent, whereas it only ac-
counts for 1.6 percent if you define deflation as the percentage change of consumer
prices lying below -1.0 percent three quarters in a row. The probability of deflation
increases with a longer time horizont, since uncertainty of the model prediction
increases accordingly. Considering the time horizont as almost two years, the prob-
ability of negative inflation rates over two periods rise up to 25.7 percent. As a
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matter of course it is even higher if you contemplate the time periode until the end
of 2005. Even for the most ”lax” definition of deflation, the probability that such
a development occurs until the end of 2005 still lies over 10 percent, whereas in
one third of the replications the change of consumer prices lies below zero in two
subsequent periods.

3.2.3 The assumption of constant oil prices

Still, these results may not be useful for assessing the economic risks associated
with deflation. Recall, that the circumstances which cause consumer prices to fall
determine whether it is harmful or not. If for example deflation is due to high
productivity gains in production, as has been experienced by the information tech-
nology sector in the last decades, falling prices are a normal reaction of the market,
which are in this case even advantageous. Lower production costs translate into
lower prices which stimulate demand for IT-products. Alternatively, negative price
change might be traced back on falling raw material costs, e.g. oil prices, which
again is not a harmful but a natural reaction of the market. Since oil prices are
extremely volatile, it is worth controlling for them in the model analysis and to find
out the probability of deflation excluding those changes in consumer prices caused
by oil price changes. To do so, we run our simulation procedure under the assump-
tion that the oil price remains constant over the forecast period. Consumer prices
are, thus, no longer influenced by the volatility of the oil price and forecast intervals
should become narrower. This should tend to result in a decrease of the probability
of deflation.

Table 2: Probability of deflation assuming contant oil prices

<0.0% <-0.5% <-1.0%
until the end of 2003

2 quarters in a row 11.3 3.9 1.2
3 quarters in a row 7.0 1.9 0.4

until the end of 2004
2 quarters in a row 20.6 9.9 4.7
3 quarters in a row 15.9 7.2 3.0

until the end of 2005
2 quarters in a row 26.5 14.4 7.3
3 quarters in a row 21.7 11.4 5.6

According to table 2 the percentage share of those simulations which forecast
deflation is indeed lower than in the previous cases. Until the end of 2003 e. g. the
probability of deflation ranges now only between 0.4 and 11.3 percent instead of 1.6
to 14.9 percent in the case of including the changes of the oil price. Controlling for
the volatility of the oil price means that any deflationary or inflationary tendency
might be attributed to business cycle movements.

3.2.4 Simultaneous deflation and recession

Finally, we analyse the chance of a fall in the consumer price level occuring together
with a recession, which may be associated with self-enforcing deflationary spiral.
We, therefore, calculate deflation probabilities under the assumption that the oil
price level remains constant and that a simultaneous recession occurs. We define
recession as a negative quarter over quarter percentage change of real GDP in two
or three periods in a row. Besides, we apply the same quantitativ restictions on
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the recession variable as we do for deflation. The probability that deflation and
recession appear at the same time is reproduced in table 3.

Table 3: Probability of deflation and a simultaneous recession

<0.0% <-0.5% <-1.0%
until the end of 2003

2 quarters in a row 0.92 0.08 0.00
3 quarters in a row 0.06 0.00 0.00

until the end of 2004
2 quarters in a row 2.30 0.18 0.02
3 quarters in a row 0.40 0.02 0.00

until the end of 2005
2 quarters in a row 4.02 0.52 0.04
3 quarters in a row 0.82 0.06 0.00

In line with our expectations, the probability of deflation is in this case substan-
tially lower than in the two cases considered before. For the shortest time horizont
(until the end of 2003) the model forecasts hardly any probability for deflation in
conjuntion with a recession. Even for the longest time horizont, it can be ruled out
that consumer prices fall for three quarters by more the 1 percent and a recession
occurs at the same time.

4 Conclusions
This paper has proposed a method for assessing the risks associated with model-
based macroeconomic forecasts. It was argued, that estimated forecast intervals
should account not only for the uncertainty arising from the model being an ap-
proximation to reality and from the model’s parameters being estimated. Instead,
they should also account for the uncertainty arising from selecting the very specifi-
cation of the model from the sample data. To allow for model selection uncertainty
to be considered systematically, we formalize a model selection procedure that spec-
ifies the lag structure of a model and also accounts for aberrant observations. The
procedure can be used to bootstrap the complete model selection process when
estimating forcast intervals.
In our application, we estimate the risk of deflationary developments occuring

in Germany over a specified forecast horizon. The forecast intervals estimated using
the outlined procedure implied the risk of a fall in the price level to be nonnegligible.
We then examined alternative economically sensible definitions of a deflationionary
development, bearing in mind that deflation may not always be harmful to the
real economy. Among other things, we find the risk of a deflation occuring together
with a recession, a development that reminds at the Great Depression in the United
States or the recent Japanese experience, is very small in the period analysed.
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