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Abstract 

This paper extends the methodological toolbox of measures of regional concentration of 
industries and industrial specialization of regions. It first defines disproportionality measures 
of concentration and specialization, and proposes a taxonomy of these measures. This taxon-
omy is based on three characteristic features of any disproportionality measure. It helps 
researchers define the measure that fits their research purpose and data best. The paper then 
generalizes this taxonomy to cover disproportionality measures of economic localization that 
evaluate specialization and concentration simultaneously, and spatial disproportionality 
measures that deal with the checkerboard problem and the modifiable areal unit problem.  
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1. Introduction 

The new economic geography has raised concerns that economic integration at the regional 

and international level may increase the regional concentration of industries (henceforth con-

centration for short) and the industrial specialization of regions (specialization). Innovative, 

dynamic industries may concentrate in core regions, leaving peripheral regions with aging, 

torpid industries. If the core regions specialize in dynamic, and the peripheral regions in tor-

pid industries, both groups of regions will be more vulnerable to adverse macroeconomic 

shocks, and the peripheral regions will grow more slowly in terms of income and 

employment.  

Various studies have explored the evolutions of concentration and specialization in Europe or 

other regions using statistical inequality measures borrowed directly or indirectly from the 

income inequality literature.1 The results emerging from these studies are remarkably 

inconclusive for mainly two reasons (Combes and Overman 2004). First, many of these stud-

ies lack a clear-cut research purpose and test hypothesis, and choose their statistical measures 

largely ad hoc. They neglect the fact that choosing between different measures actually 

implies choosing between different definitions of concentration or specialization rather than 

just choosing between different ways of measuring a single, uniform theoretical construct of 

concentration or specialization.2 Any inferences drawn from a concentration or specialization 

measure will thus be ambiguous unless they are based on a clear-cut definition of what kind 

of concentration or specialization a researcher actually intends to study, and unless the meas-

ure reflects this definition properly. And second, the studies differ in the sectoral and spatial 

scales of the data used to calculate the measures. They largely neglect the fact that the choice 

of the sectoral and spatial scales affects, due to the checkerboard problem and the modifiable 

areal unit problem (MAUP),3 the values of the measures and their interpretation. 

                                                 

1 Examples of such inequality measures are the Theil index, the Gini coefficient, the coefficient of variation, 
and the relative mean deviation (Krugman index). In addition, the Herfindahl index, dartboard measures, and 
statistics based on Ripley’s K have been used to measure concentration or specialization. See Bode et al. 
(2003), Combes and Overman (2004), or Nijkamp et al. (2003) for recent reviews.  

2 Allison (1978: 865) makes a similar point with respect to the measurement of income inequality.  
3 The checkerboard problem (Arbia 2001) arises from neglecting relevant information on the locations of or 

distances between regions (or industries; see Arbia and Piras 2008). Treating regions as anonymous units 
renders the measures insensitive, inter alia, to whether or not regions with similar characteristics are spatially 
clustered. The MAUP (Openshaw and Taylor 1979; Arbia 1989) arises from discretizing heterogeneous 
continuous space into regions. It comes under two guises: (i) Discretizing space averages away heterogeneity 
within the regions. The larger the regions are defined, the more information on spatial heterogeneity will 
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The present paper addresses these two deficiencies in the concentration and specialization 

literature.4 It addresses the first deficiency by redefining and extending the available inequal-

ity measures such that they are better suited to study concentration and specialization patterns, 

and by proposing a taxonomy of these measures. The redefined and extended inequality 

measures will be called disproportionality measures of regional concentration or of industrial 

specialization. The taxonomy of these disproportionality measures helps researchers to specify 

their research hypothesis more precisely, and to define a measure that appropriately reflects 

their definition of concentration or specialization. The paper addresses the second deficiency 

by generalizing disproportionality measures of concentration and their taxonomy to—what 

will be called—spatial disproportionality measures of concentration (spatial concentration 

measures for short). Spatial concentration measures mitigate the effects of the checkerboard 

problem and the MAUP by explicitly taking into account an industry’s characteristics in 

neighboring regions. 

In addition to addressing the two deficiencies of the literature, the present paper proposes dis-

proportionality measures of economic localization (localization measures for short) as well as 

a taxonomy of these measures. Being straightforward generalizations of the disproportionality 

measures of concentration and specialization, localization measures overcome the dichotomy 

between concentration and specialization. Summarizing the joint distribution of, say, 

employment across regions and industries in a single measure, they permit a simultaneous 

analysis of regional concentration and industrial specialization patterns, and thereby facilitate 

a nested analysis of concentration and specialization patterns at different sectoral and regional 

scales.  

The taxonomy of disproportionality measures gives rise to a modular construction system of 

three characteristic features that unambiguously define any disproportionality measure: a 

weighting scheme, a reference distribution, and a projection function.5 Each characteristic 

                                                                                                                                                         

usually be lost (scale problem). The concentration or specialization measures, which are supposed to measure 
the extent of spatial heterogeneity, are therefore sensitive to the scale of spatial aggregation. By the same 
token, they are sensitive to the scale of sectoral aggregation. (ii) The boundaries between the discrete spatial 
(or sectoral) units may be such that they cut through geographical areas (or sectoral activities) that are 
homogeneous in terms of their characteristics of interest, or such that the spatial (sectoral) units comprise 
areas (or activities) with distinctively different characteristics (arbitrary boundary problem). 

4 A third deficiency in the literature, which is discussed only briefly in Section 2 of this paper, is the lack of 
rigorous statistical hypothesis testing (Combes and Overman 2004). Taking the values of measures at face 
value, most studies neglect the fact that the measures may be subject to a significant amount of uncertainty.  

5 Spatial disproportionality measures have a fourth characteristic feature, the spatial weighting scheme. 
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feature serves a distinct function for the measure: The weighting scheme determines the basic 

units (subjects) of the analysis, the reference distribution the benchmark of no concentration 

or specialization, and the projection function the relative emphasis put on positive and nega-

tive as well as on large and small deviations of the observed units from their reference. For 

each characteristic feature, there is a variety of alternative realizations that can be chosen 

largely independently of the realizations of the other two features.6 By purposefully choosing 

a specific realization for each feature, a researcher can define the disproportionality measure 

that meets the requirements of his specific research hypothesis most closely, and he can alle-

viate, as far as possible, the effects of a suboptimal sectoral and spatial disaggregation of his 

data on his inferences.  

The three characteristic features jointly determine the informational content and interpretation 

of the measure: The value of a measure may thus be attributed to the concept of concentration 

or specialization implied by the measure’s characteristic features. Moreover, the robustness of 

the inferences drawn from a measure can be investigated by selectively modifying the reali-

zations of single characteristic features. The taxonomy of measures also helps researchers to 

specify their research hypothesis more precisely by giving them the opportunity to assess the 

implications for the measure’s interpretation of different realizations of each characteristic 

feature.  

The taxonomy of measures covers most of the measures used frequently in the literature on 

concentration and specialization, including the Gini coefficient, the Krugman index, the Theil 

index, and the coefficient of variation.7 It actually covers a much wider range of measures, 

including the entire generalized entropy (GE) class of measures.8 It does not, however, cover 

measures that differ conceptually from inequality measures, such as the so-called “dartboard” 

measures (Ellison and Glaeser 1997; Maurel and Sédillot 1999), or distance-based statistics 

using Ripley’s K as functions proposed by Duranton and Overman (2005; 2008) and Marcon 

                                                 

6 The bulk of the existing literature considers inequality measures as fixed combinations of two of these three 
features, the reference distribution and the projection function. An important step towards a more flexible 
combination of features is taken by Brülhart and Träger (2005), who consider using different references for 
the same projection function. However, unlike the present paper, they do not consider varying the weighting 
scheme independently of the reference distribution. 

7 The Herfindahl index, another measure used in this literature, is closely related to the coefficient of variation.  
8 The GE class of measures on its part is closely linked to the extended Atkinson class of measures (Lasso de 

la Vega and Urrutia forthcoming), which is, like the GE class, very prominent in the income inequality 
literature. 
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and Puech (2003; 2005). Disproportionality measures similar to those discussed in the present 

paper may also be useful for the analyses of regional income inequalities or international trade 

patterns because these analyses are subject to similar conceptual problems. 

The organization of the paper is as follows. Section 2 introduces the disproportionality meas-

ures of concentration and specialization as well as their taxonomy, Section 3 extends the tax-

onomy to disproportionality measures of localization, and Section 4 extends it to spatial dis-

proportionality measures of concentration. Section 5 concludes, and discusses possible direc-

tions for future research. Appendix 1 deals with the issue of standardizing the disproportion-

ality measures discussed in this paper to the 0 – 1 interval by dividing them by their upper 

bounds. This paper does not give specific empirical illustrations of the measures discussed. 

Any short and quick empirical illustrations would contradict one of the main purposes of this 

paper, which is to emphasize the need to define research purposes carefully and unambigu-

ously, and to define measures such that they fit both the research purpose and the characteris-

tics of the available data as closely as possible.9  

2. The Taxonomy 

This section introduces a taxonomy of disproportionality measures of concentration and spe-

cialization. It defines the disproportionality measures, discusses their three characteristic fea-

tures, and illustrates how specific disproportionality measures of concentration and speciali-

zation can be constructed using a modular construction system consisting of the three charac-

teristic features. This section also briefly discusses merits and drawbacks of adopting methods 

of statistical hypothesis testing used in the income inequality literature.  

Definition of disproportionality measures 

All the measures covered by the taxonomy can be characterized as measures of the dispropor-

tionality of the distribution of a population across a set of mutually exclusive characteristics 

and a predetermined reference distribution. Since the available data is discrete in most empiri-

cal studies of concentration or specialization, this section focuses on discrete versions of the 

measures. The population may be workers, establishments, or units of value added; the char-

                                                 

9 The interested reader is referred to Bickenbach et al. (2008), which investigates the evolutions of localization, 
concentration and specialization in Europe, using the measures discussed in the present paper. 



 5

acteristics may be industries or regions. For expositional convenience, this section is limited 

to measures of the regional concentration of employment in an industry. Thus, the population 

is workers within an industry, and their characteristics are the regions of their workplaces.10  

Formally, for a finite set of industries, i ∈ I = {1, …, I}, and a set of regions, 

r ∈ R = {1, …, R}, let L(ir) = (Lir: ir ∈ I x R) denote the industry-region employment pattern 

and Li(r) = (Lir: r ∈ R) the distribution of industry i employment across regions at a given 

point in time.11 Li(r) will henceforth be dubbed the “variable of main interest”. For a given 

reference distribution, Π(r) = (Πr: r ∈ R), and absolute region-specific weights, 

W(r) = (Wr: r ∈ R), the disproportionality measure ΠW
iM  is given by 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Π

)(

)(
)( ,

r

ri
rM

W
i fM

Π
L

W .  (1) 

M reflects the projection function, fM, and the superscripts, WΠ, denote the choice of the 

weights and the references. The projection function is such that the region-specific propor-

tionality factors, Lir/Πr [=: Xir], are always scaled by their weighted average across all regions, 
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ri XwX ∑== ∑=∑= 11 . Likewise, the region-specific weights, Wr, are always scaled 

by their average across all regions, such that wr = Wr/ΣrWr . Technically, Mi is a function of wr 

and Xir/ iX  only, similar to inequality measures. The key difference is, however, that a dispro-

portionality measure describes the inequality across regions of the proportions of the variable 

of main interest and its reference, Lir/Πr, rather than just the inequality of the variable of main 

interest. This—apparently minor—extension or redefinition makes the measures more suit-

able for analyzing concentration or specialization because it introduces the reference explic-

itly as a separate variable into the measure. This reference can be chosen from a wide array of 

possible references, depending on the research purpose at hand. The population mean, iX , 

merely serves as a scaling factor in disproportionality measures. It ensures that the measures 

assume a minimum value of zero if the region-specific disproportionality factors are the same 

in all regions (Lir/Πr = Lis/Πs ∀ r, s ∈ R). In addition, it makes the measures invariant to the 

                                                 

10 For measures of specialization, the population is workers within a region and their characteristics are their 
industrial affiliations. Formally, specialization measures can be obtained from concentration measures by 
merely switching the indices for regions and industries.  

11 The time index, t, is omitted here for simplicity. 
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scales of both the variable of main interest and the reference. The scale of the reference may 

thus deviate from that of the variable of main interest.  

The three characteristic features 

The taxonomy proposed in this paper builds on the three characteristic features of the meas-

ures in equation (1): (i) the region-specific weights, W(r), (ii) the references, Π(r), and (iii) the 

projection function, fM. Together with the variable of main interest, Li(r), these three features 

unambiguously define a measure. For any empirical investigation, the specification of each 

characteristic feature should follow directly from the research purpose or the test hypothesis 

at hand, and take into account the specificities of the available data.  

(i) The region-specific weights, W(r), reflect the researcher’s choice of the basic units of 

analysis (Brülhart and Träger 2005): for measures of concentration, the basic units are spatial 

units. The variable of main interest is defined as the number of industry i workers per basic 

spatial unit.12 The region-specific weights ensure that each basic unit is assigned the same 

weight in calculating the measure. Disproportionality measures allow a variety of different 

basic units to be specified but require the variable of main interest as well as the references to 

be measured consistently in terms of these basic units. Only three types of basic units have, 

nonetheless, been used in the literature so far: First, the regions themselves have been chosen 

as basic units, which implies assigning all regions the same weight, independent of their 

actual sizes or any other characteristics. These basic units are represented by the region-spe-

cific weights W(r) = 1(r) = (1, …, 1) in equation (1). By standardizing the sum of weights to 

one, each region is assigned the relative weight wr = 1/R. Second, square kilometers (km²) 

have been chosen as basic units, which implies weighting each region by its geographical size 

(Ar), i.e., W(r) = A(r) = (A1, …, AR). As the spatial distribution of workers within the regions 

cannot be observed in most cases, workers are assumed to be distributed uniformly across 

space within a region. And third, the average size of the area attributed to a worker in the 

region in the year, t, under study has been chosen as basic units, which implies weighting 

each region by its total employment, i.e., W(r) = L•(r) = (L•1, …, L•R). L•r [= ΣiLir] denotes the 

sum of workers over all industries in region r. Each worker in region r is taken to represent a 

share of 1/L•r of the region’s area. Types of basic units that have not been used in the litera-

                                                 

12 For measures of specialization, the basic units are units of (sectoral) activities, such that the variable of main 
interest is defined as, say, the number of region r workers per unit of (sectoral) activities.  
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ture so far include (i) the average size of the area attributed to a worker in a fixed reference 

year, t0, i.e., W(r)t = L•(r),t0 = (L•1,t0, …, L•R,t0), t ≠ t0, or (ii) the average size of the area attrib-

uted to a worker in the region-industry itself in t0, i.e., W(r)t = Lir,t0 = (Li1,t0, …, LiR,t0), t ≠ t0. 

These fixed-year weights are, like the uniform weights, time-invariant, a property that is par-

ticularly useful for studying changes in the concentrations of large industries or sectors over 

time. Unlike contemporary weights drawn from higher-level sectoral aggregates, fixed-year 

weights can be assumed to be exogenous to employment changes in the industry under study 

even if this industry is large.  

Measures using regions as basic units will be labeled unweighted measures, those using non-

uniform region-specific weights weighted measures. Weighted measures are invariant to 

dividing a region into subregions if the weights reflect the sizes of the regions, and the sub-

regions exhibit, or are assumed to exhibit, identical concentration patterns. Haaland et al. 

(1998) attribute this invariance to relative measures. The taxonomy proposed here makes clear 

that it is solely due to the choice of the weights. 

(ii) The reference distribution, Π(r), reflects the researcher’s choice of benchmark, or the null 

hypothesis of “no” or “no unusual” concentration. Economically meaningful inferences 

require the reference distribution to pick up any systematic components in the observed 

regional employment patterns that the researcher is not willing to label concentration for the 

research purpose at hand (Combes and Overman 2004). Similarly, anything the researcher 

wants to label concentration should show up as a deviation of the variable of main interest 

from its reference. Disproportionality measures allow a great variety of references to be speci-

fied, provided the references are defined over the basic units. Only the three types of refer-

ences that match the weights discussed above have, nonetheless, been used in the literature: 

the uniform distribution, the distribution of the geographical sizes of regions, or the distribu-

tion of employment observed at a higher-level sectoral aggregate. Choosing the uniform dis-

tribution as the reference implies assuming all regions to be of the same size under the null 

hypothesis (H0). This reference is represented by Π(r) = 1(r) in equation (1). Uniform refer-

ences reflect the researcher’s emphasis on the qualitative characteristics of regions, or on 

administrative issues. Choosing the distribution of the geographical sizes of regions as the 

reference implies assuming employment in the industry under investigation to be distributed 

evenly across space under the H0, i.e., Π(r) = A(r). And choosing the distribution of employ-

ment observed at a higher-level sectoral aggregate (total regional employment, for example) 

as the reference implies assuming the spatial distribution of the industry under investigation to 
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equal that of total employment across all industries under the H0, i.e., Π(r) = L•(r). The latter 

choice reflects the researcher’s emphasis on controlling for systematic differences between 

regions in the sizes of their labor forces, in their attractiveness to firms or workers, their 

regulatory frameworks, or other institutional or political factors. Types of references that have 

not been used in the literature so far include (i) the distribution of a higher-level sectoral 

aggregate in a fixed reference year t0, i.e., Π(r)t = L•(r),t0, t ≠ t0, and (ii) the spatial distribution 

of employment in the industry under investigation itself in t0, i.e., Π(r)t = Li(r),t0, t ≠ t0. These 

fixed-year references are time-invariant, like uniform references, but allow controlling for 

differences in the exogenous sizes of regions. Measures based on the uniform reference will 

henceforth be labeled absolute measures, those based on a nonuniform reference, relative 

measures.13  

(iii) The projection function, fM, generally reflects the researcher’s relative emphasis on 

region-specific proportionality factors of different magnitudes (Cowell, 2000; Cowell and 

Flachaire, 2002). Types of projection functions covered by the taxonomy include the gener-

alized entropy (GE) class of measures, the relative mean deviation (RMD), and the Gini 

coefficient.14  

According to “folk wisdom” (Cowell and Flachaire, 2002: 1), different projection functions 

emphasize different values of the region-specific proportionality factors. Projection functions 

of the GE type with a sensitivity parameter α < 0 (α > 1) are said to put stronger emphasis on 

variations in the range of lower (higher) values of the region-specific proportionality factors. 

The respective projection functions may consequently be preferred if, in a study of the evolu-

tion of concentration over time, for example, the test hypothesis suggests putting particular 

emphasis on the changes in the regions where the industry is underrepresented (overrepre-

sented). The projection function of the RMD is said to put stronger emphasis on changes in 

the balance between below- and above-average values of the region-specific proportionality 

factors, and on incidences of regions “jumping across” the reference. This projection function 

may consequently be preferred if the test hypothesis suggests putting more emphasis on 

changes in, or differences between, the aggregate balance of under- and overrepresentation. 

                                                 

13 Brülhart and Träger (2005) introduce the term topographic measures for measures using the area as a refer-
ence. This reference is just one of many possible nonuniform references.  

14 See Table 1 below for a formal definition of the different projection functions. 
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And the projection function of the Gini coefficient is said to put neither particular emphasis 

on regions where the industry is strongly underrepresented nor on those where the industry is 

strongly overrepresented.  

In addition to being subject to these theoretical considerations, the choice of the projection 

function may be subject to practical considerations. To reduce the effects of “outliers” or indi-

visibilities in firm sizes on the measure, a projection function may be preferred that is not too 

sensitive to these outliers or indivisibilities. The “folk wisdom” would, for example, suggest 

preferring a GE measure with α > 1 (α < 0) if the data is contaminated by outlying regions 

with low (high) proportionality factors (Cowell and Flachaire 2002). It also suggests that the 

RMD and the Gini coefficient are not too sensitive to both regions with particularly low and 

those with particularly high proportionality factors.  

To assess the robustness of the results obtained for the preferred projection function, they may 

be compared to the results obtained for other projection functions. The taxonomy proposed 

here offers the most suitable framework for these robustness tests because it facilitates 

changing the projection function while retaining the preferred region-specific weights and 

references.  

In the literature, concentration and specialization measures have so far been classified by their 

projection function and their reference distribution (Haaland et al. 1998). The reference and 

the weights have always been assumed to be the same. Varying the references independently 

of the region-specific weights has not been considered an option. The present paper argues 

that this is unnecessarily restrictive. By distinguishing carefully between references and 

weights, the taxonomy adds one additional degree of freedom to the opportunities to choose 

an appropriate measure. Disentangling references and weights is useful for three reasons. 

First, the research purpose or test hypothesis may require using a reference that differs from 

the weighting scheme. For example, a study of local policies may require choosing the sphere 

of influence of local governments as the basic units, i.e., W(r) = 1(r), while the aggregate 

regional employment is the proper benchmark, i.e., Π(r) = L•(r). Or the research purpose may 

require comparing the spatial distribution of an industry to that of total employment, i.e., 

Π(r) = L•(r), while controlling for the geographical size of regions, i.e., W(r) = A(r). Second, the 

research purpose or test hypothesis may require comparing the values of two measures that 

differ only in the reference or in the weighting scheme. And third, selectively changing the 
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region-specific weights or the references helps in assessing the robustness of the preferred 

measure to a variation of the basic units or the null hypothesis of no concentration.  

Illustrations 

Using the taxonomy proposed here, four different groups of measures can be defined for each 

projection function: An unweighted absolute measure and various unweighted relative, 

weighted absolute, and weighted relative measures. Table 1 gives an overview of the general 

principle of defining disproportionality measures of concentration for selected projection 

functions: the GE class of measures, the Theil index, the CV,15 the RMD, and the Gini 

coefficient. The table can easily be extended to projection functions based on other measures 

discussed in the inequality literature (see, e.g., Cowell 1995; Silber 1999). The first column in 

Table 1 gives, for each projection function, a general form that can be used to derive all 

related measures. For a given region-industry employment pattern, Li(r), a measure may be 

unambiguously defined by choosing a reference distribution, region-specific weights, and a 

projection function. The remaining three columns in Table 1 give three examples of measures 

obtained for different combinations of weights and references: the unweighted absolute, an 

unweighted relative, and a weighted relative measure.16 To save space, weighted absolute 

measures are omitted, and the relative and the weighted measures are exemplified only for 

total regional employment as references or weights.  

In what follows, the constructive principle of disproportionality measures will be illustrated 

for two projection functions: the relative mean deviation (RMD; “Krugman” index), and the 

generalized entropy (GE) class of measures. The illustration of the RMD/Krugman index  

 

                                                 

15 The Theil index and (a transformed version of) the CV are actually members of the GE class of measures. 
Owing to their popularity in the literature, they are nonetheless listed separately in Table 1.  

16 All three variants of the measures listed in Table 1 have actually been employed in studies of regional 
concentration or industrial specialization, though not for all the projection functions: Among the weighted 
relative measures used in the literature are (i) the so-called Krugman index (weighted relative RMD) used, 
e.g., by Krugman (1991), Hallet (2002), Dohse et al. (2002), Traistaru et al. (2003), Morgenroth (2008), and 
Totev (2008); (ii) the so-called relative Theil index (e.g., Brülhart and Träger 2005, Iara 2008, Krieger-Boden 
2008a; 2008b), (iii) the relative CV (e.g., Brülhart and Träger 2005), and (iv) the “locational” Gini 
coefficient (Krugman 1991, Amiti 1998, Brülhart 2001). An unweighted relative measure is the Gini 
coefficient used by Südekum (2006), who (mis-) interprets his Gini coefficient as the locational Gini. And 
among the unweighted absolute measures are (i) the traditional Gini coefficient (Aiginger and Leitner 2002, 
Midelfart-Knarvik et al. 2002), (ii) the absolute Theil index (Aiginger and Davies 2004), and (iii) the 
absolute CV (Aiginger and Leitner 2002). 
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demonstrates that even measures that are usually considered ad-hoc measures fit into the tax-

onomy after a suitable transformation and reinterpretation.17 The illustration of the GE class 

of measures demonstrates the interpretation of disproportionality measures in terms of basic 

units. 

Consider first the so-called Krugman index, which, for the concentration of industry i, is 

defined as  

 ∑∑
= ••

•

•=

−=−=
R

r

r

i

ir
R

r
riri L

L
L
LK

11

: λλ .  (2) 

As Ki is calculated as the unweighted sum of the absolute region-specific differences between 

the employment shares for industry i, λir := Lir/ΣrLir = Lir/Li•, and the “reference”, 

λr := L•r/ΣiΣrLir = L•r/L••, it can be interpreted easily and intuitively: A value of, say, Ki = 0.5 

indicates that a share of at least one-fourth (½ Ki) of the industry’s total workforce has to 

move to another region for the employment distribution to correspond exactly to the reference 

distribution. The Krugman index has traditionally been classified as a “relative” measure. The 

taxonomy proposed in the present paper suggests looking at Ki in a slightly different way. By 

rearranging (2), the Krugman index can be shown to be a weighted relative RMD ( WR
iRMD ; 

see Table 1, last column): 
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LCir = λir/λr in (3) denotes the location coefficient for region-industry ir. By setting 

Π(r) = W(r) = L•(r), (3) can alternatively be derived directly from the general definition of the 

RMD given in the first column in Table 1. 

The first line of (3) illustrates the constructive principle of all the disproportionality measures 

discussed in the present paper: Any disproportionality measure first determines the (dis-) pro-

                                                 

17 Essentially, the same is true for the Gini coefficient in general and the locational Gini coefficient in 
particular. The constructive principle of Gini disproportionality measures and the corresponding Lorenz 
curves is illustrated in Appendix 2. 
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portionality factor for each region by comparing the value for the region-industry, Lir, to its 

corresponding reference value, which is L•r in this case. And second, the measure converts the 

region-specific proportionality factors into its specific metric by applying the projection func-

tion. The projection function of the RMD requires (i) scaling the region-specific proportion-

ality factors by their weighted mean across all regions, Σr(L•r/L••)(Lir/L•r) [=: li], employing 

the weights implied by the choice of the basic units; (ii) subtracting 1; (iii) taking the absolute 

value; and (iv) taking the weighted average over all regions, again employing the weights 

implied by the choice of the basic units.  

Following the same constructive principle, any of the characteristic features of the dispropor-

tionality measure may be varied separately. Setting W(r) = 1(r), and Π(r) = L•(r) yields the 

unweighted relative RMD, 

 ∑
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where lir = Lir/L•r (see Table 1, third column). And setting Π(r) = W(r) = 1(r) yields the 

unweighted absolute RMD,  
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(see Table 1, second column). Comparing the Krugman index, or weighted relative RMD in 

(2) to the unweighted absolute RMD in (5) demonstrates the usefulness of the proposed tax-

onomy vis-à-vis the traditional distinction of absolute and relative measures: According to the 

traditional distinction, the two measures differ in just one characteristic, namely their refer-

ence. The proposed taxonomy shows that the two measures actually differ in two characteris-

tics, their reference and their region-specific weights.  

Consider second the generalized entropy class of measures, GE(α). In contrast to the RMD, the 

GE measures can be derived from a set of axioms that define several useful properties (see, 

e.g., Cowell 1995; Litchfield 1999). One useful property is decomposability: The total ine-

quality within a population can be decomposed into the inequality within and the inequality 

between any set of subgroups of the population. The GE class of measures for a vector of 

characteristics Y(n) = (Y1, …, YN) of a population of N “basic units” is generally defined as 
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with the corresponding limiting expressions for α = 0 and α = 1. nnN YY ∑= 1  denotes the 

mean across all members of the population. The most prominent GE measures are those given 

by α = 2, which is a simple monotonic transformation of the coefficient of variation, 

GE(2) = ½CV 2, and by α → 1, which is the Theil index, i.e., GE(1) = T.  

GE(α) in (6) can be decomposed into a within-groups component, GE(α)w, and a between-

groups component, GE(α)b, such that GE(α) = GE(α)w + GE(α)b. For H subgroups with Nh basic 

units in subgroup h (h = 1, …, H), the between group component is given by 
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where nh
N
nNh YY h

h 1
1

=∑=  is the unweighted mean of subgroup h, and [ ]nnNhN
N

h YYY h ∑=∑= 1  is 

the weighted average of all subgroup means. Ynh denotes the characteristic of the nth member 

of the hth subgroup.  

Traditionally, the (unweighted) absolute GE(α) measures of concentration have been derived 

from (6) and the (weighted) relative measures from the between-group component (7), 

assuming the unobservable within-group component to be zero (Brülhart and Träger 2005). 

The taxonomy proposed in this paper instead suggests using a generalized form of the 

between-group component (7) as the unique basis for all GE measures of concentration (see 

Table 1, first row): 
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All disproportionality measures derived from (8) share the usual properties of GE measures, 

provided the variables of main interest, the weights, and the references are related to the basic 

units in a consistent way.  

Statistical inferences 

Since the data used in studies of concentration or specialization usually comprises the entire 

populations of regions, industries, workers, or units of value added rather than nonexhaustive 

random samples of a larger population, the measures calculated from this data may be consid-
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ered non-stochastic. This is not the case, however, if the data on region-industry employment 

or value added is subject to measurement errors or idiosyncratic random shocks, which intro-

duces a stochastic component to the measures (Brülhart and Träger 2005).  

Those studies that account for this stochastic component by assessing the statistical signifi-

cance of observed concentration or specialization patterns use inferential methods borrowed 

from the income inequality literature. In the income inequality literature, two approaches have 

been used to calculate standard errors or probability intervals: asymptotic theory (Cowell 

1989) and bootstrap methods (Mills and Zandvakili 1997; Biewen 2002). In this literature, the 

main source of uncertainty is that the observed income data is generated by a nonexhaustive 

random sampling process. Although the bootstrap method can be expected to perform better 

than asymptotic theory in income inequality studies (Cowell and Flachaire 2002), both meth-

ods are not without problems. One problem is that the theoretical properties of these methods 

are largely unknown for small samples. Another problem is that the errors in rejection prob-

abilities can be significant even for very large samples, as simulations show. These errors tend 

to be quite sensitive to the characteristics of the distribution of the observed data (Cowell and 

Flachaire 2002). 

The inferential methods used for income inequality measures can, in principle, also be used 

for the corresponding disproportionality measures discussed in the present paper. They may 

help in evaluating the significance of changes in concentration (or specialization) over time, 

or that of differences across industries or regions. Brülhart and Träger (2005), for example, 

employ a (weighted block-) bootstrap based on Biewen (2002) to assess the significance of 

changes in the regional concentration of industries over time. This test is motivated by the 

assumption that their data is subject to country-specific measurement errors, and that these 

errors are independent of the sizes of the region-industries in terms of employment or value 

added.  

Any statistical tests for measures of concentration or specialization based on these methods 

should, however, be interpreted with even greater caution than those for measures of income 

inequality for at least two reasons. First, small sample errors may be more relevant because 

the number of observations in concentration or specialization studies is typically much 

smaller. And second, insights on the performance of these tests in the context of income 

inequality measurement are of only limited relevance because they are gained for the specific 

sources of uncertainty and the specific characteristics of distributions usually observed for 

income data. These sources of uncertainty and characteristics of distributions may differ fun-
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damentally from those considered relevant in the analysis of concentration or specialization. 

While these differences are, under appropriate regularity assumptions, irrelevant for the 

asymptotic properties of the statistical tests, they may affect the properties of the statistical 

tests significantly for finite samples of regions or industries. For finite samples, the reliability 

of the tests appears to be generally quite sensitive to the specific sources of uncertainty and 

characteristics of distributions. As a consequence, bootstrap tests of the equality of two values 

of a measure may be far too conservative, rejecting the null hypothesis of equality in far too 

few cases, if the sample sizes and the measurement errors are rather small. Detailed studies 

are warranted to assess the performances of the statistical tests in the measurement of con-

centration or specialization for relevant distributional assumptions and sample sizes.  

3. Generalization 1: Disproportionality Measures of Localization 

Disproportionality measures of localization of an economy evaluate the concentration of 

industries and the specialization of regions within the economy simultaneously. Formally, 

they are straightforward generalizations of the disproportionality measures of concentration or 

of specialization discussed in Section 2. Rather than evaluating the employment pattern in just 

one dimension, i.e., in either one industry, Li(r), or one region, L(i)r [= (Lir: i ∈ I)], measures of 

localization cover both dimensions simultaneously, thus evaluating all elements of the indus-

try-region employment pattern, L(ir).18 In terms of the proposed taxonomy, localization meas-

ures require specifying an (IxR) matrix of two-dimensional region-industry-specific weights, 

W(ir) [= (Wir: i ∈ I; r ∈ R)], and an (IxR) matrix of two-dimensional region-industry-specific 

references Π(ir). The region-industry-specific weights reflect the choice of basic units in the 

 

regional and sectoral dimensions; the references reflect the no-localization benchmark for 

each region-industry under study. The weights and references may—but need not necessar-

ily—be products of industry-specific and region-specific weights and references, for example, 

W(ir) = W(i)W(r)` or Π(ir) = L(i)•L•(r)`.  

                                                 

18 Similar measures for two-dimensional data, labeled “segregation measures”, have recently been discussed in 
the sociological segregation literature (Reardon and Firebaugh 2002). In the economics literature, special 
cases of the localization measures discussed here have been used by Aiginger and Davies (2004), Aiginger 
and Rossi-Hansberg (2006), Cutrini (2006), and Mulligan and Schmidt (2005). The present paper generalizes 
these measures in order to integrate them into the taxonomy presented in Section 2. 
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Table 2 depicts the general forms of localization measures for several projection functions, 

similar to the first column in Table 1. The various weighted or unweighted, absolute or rela-

tive measures can be derived from these general forms in a way similar to that outlined in 

Section 2. A weighted relative GE measure of localization for Π(ir) = L(i)•L•(r)` and 

W(ir) = L(i)•L•(r)` can, for example, be derived from the general form of the GE localization 

measure in Table 2 as 
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For I = 1, all localization measures in Table 2 reduce to the corresponding concentration 

measures discussed in Section 2; for R = 1, they reduce to the corresponding specialization 

measures. 

Notice that localization measures do not require specifying the same kinds of weights or ref-

erences in the sectoral and regional dimensions. A research hypothesis that suggests, for 

example, choosing relative weights in the sectoral dimension but absolute weights in the 

regional dimension can be investigated by specifying a region-industry-specific weights 

matrix such as W(ir) = L(i)•1(ir)`. Each region-industry is assigned the standardized weight 

wir = Wir/(ΣiΣrWir) = li•/R in this case. Similarly, the references can be constructed from com-

binations of different types of industry- and region-specific references. Choosing total 

employment by industry as a sectoral and area as a regional reference implies, for example, 

the reference matrix Π(ir) = L(i)•A(r)`. The definitions of the references or weights may even 

differ between the industries or the regions as long as the scales of the references (or weights) 

are the same for all region-industries. For example, the regional reference (and/or weight) for 

agriculture may be chosen to be a region’s area, for manufacturing industries the region’s 

aggregate employment, and for service industries the region’s population.  

Localization measures share virtually all the properties of the corresponding concentration or 

specialization measures (Reardon and Firebaugh 2002). One of these properties, the decom-

posability of the GE measures, is particularly useful for testing detailed and complex research 

hypotheses about the contributions of individual industries, sectors, counties, or states within 

a nation to the national economy’s overall localization at a specific point in time. GE meas-

ures of localization can be decomposed successively or simultaneously in the industrial and 

the regional dimensions. Appendix 3 illustrates the stepwise decomposition of a Theil index 
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Table 2. Disproportionality Measures of Economic Localization1 
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1 The corresponding unweighted absolute, unweighted relative, and weighted relative measures are obtained 
from the general forms in the same way as described for regional concentration measures in Section 2 and 
Table 1.  

 

of a country’s localization by sectors, states, and industries. A comparison over time of the 

measures obtained by decompositions can be used to test research hypotheses about the con-

tributions of individual industries, sectors, counties, or states to changes in overall national 

localization (Bickenbach et al. 2008).  

If the (contemporary) industry and region totals are used as references and weights in a 

weighted relative localization measure, i.e., if Π(ir) = L(i)•L•(r)` and W(ir) = L(i)•L•(r)`, the 

localization measure is simply the weighted average of the corresponding concentration or 

specialization measures (Reardon and Firebaugh 2002; Cutrini 2006). This is true not only for 

the GE measures but also for those measures that do not meet the general decomposability 

requirements. For the RMD, for example, one obtains 
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4. Generalization 2: Spatial Disproportionality Measures of Concentration 

All the disproportionality measures discussed so far are invariant to the spatial ordering of, 

and the interdependencies between the regions under investigation, which gives rise to the 

checkerboard problem and the MAUP (see footnote 3). Arbia (2001) suggests combining ine-

quality measures such as the Gini coefficient with statistics of spatial association such as 

Moran’s I or the Getis-Ord statistic. While the inequality measure is informative as to the 

degree of concentration of an industry within regions, the spatial statistic gives an indication 

of the degree of spatial clustering of the industry between regions. Lafourcade and Mion 

(2007) use a similar approach but test in addition for the effects of firm size by combining the 

dartboard measure and Moran’s I statistic. 

Rather than combining aspatial and spatial measures in such an ad hoc way, this paper sug-

gests introducing the spatial dimension directly into the disproportionality measures. The 

resulting measures, which are labeled spatial disproportionality measures of concentration, 

are actually generalizations of the corresponding aspatial measures discussed in Section 2 (see 

Table 1). The basic idea is to complement the values of the variable of interest and the refer-

ence of any region with the corresponding values of nearby regions. Reardon and O’Sullivan 

(2004) suggest doing so in a way similar to a kernel density estimation, or a geographically 

weighted analysis. More specifically, they suggest defining a measure in terms of the spatially 

weighted averages of the variables of main interest and the reference.19  

To extend the taxonomy presented in Section 2 to spatial disproportionality measures, Lir and 

Πr can be redefined as spatially weighted sums,  

 iq
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q
rq

S
r Π=Π ∑
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φ , 

                                                 

19 Reardon and O’Sullivan (2004) discuss this approach in the context of spatial segregation measures and 
continuous space. As in the previous sections, the following discussion focuses on disproportionality 
measures for regional aggregates. 
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where φrq is a nonnegative spatial weight, or spatial discount factor that reflects the “close-

ness” of region q to region r, and the superscript S denotes spatially weighted variables. The 

closeness between regions may generally depend on geographic distances, neighborhood pat-

terns, or accessibility. The variables S
irL  and S

rΠ  are spatial averages if the spatial weights are 

normalized by dividing them by their row sums, or spatial sums if the spatial weights are not 

row-normalized.  

All the measures in Table 1 can be extended to spatial measures of concentration by extend-

ing the set of characteristic features of the concentration measures discussed in section 2 by 

an (RxR) matrix Φ(r) = (φrq: r, q ∈ R; φrq ≥ 0), and by substituting S
irL  and S

rΠ  for Lir and Πr. 

Table 3 depicts the general forms of the spatial measures for several projection functions, 

similar to the first column in Table 1. The various weighted or unweighted and absolute or 

relative measures can be derived from these general forms in a way similar to that outlined in 

Section 2. The general form of the spatial GE measures, for example, reads 
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Due to the geographical weighting, the effect of region r on the measure is larger if industry i 

is overrepresented (or underrepresented) in both the region itself and its neighbors. And it is 

smaller if industry i is over- (under-) represented in region r but under- (over-) represented in 

nearby regions. Setting φrq = 1 for q = r and φrq = 0 for q ≠ r yields the corresponding aspatial 

measures. 

Spatial concentration measures are capable of mitigating the checkerboard problem and the 

MAUP inherent to any analysis of concentration based on regional aggregates. They mitigate 

the checkerboard problem by taking into account the geographical ordering of the regions. 

The value of a spatial concentration measure will, ceteris paribus, be higher the more the 

regions where the industry under study is overrepresented or underrepresented are clustered 

spatially. And they mitigate the MAUP by way of geographical smoothing and carefully 

specifying the intra- and interregional weights. Geographical smoothing addresses the arbi-

trary boundary problem. The contribution of a region to the concentration measure takes into 

account the concentration of the industry on both sides of the region’s boundary. And the  
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Table 3. Spatial Disproportionality Measures of Concentration1 
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1 The corresponding unweighted absolute, unweighted relative, and weighted relative spatial measures are 
obtained from the general forms in the same way as described for regional concentration measures in Section 2 
and Table 1.  

 

specification of the intra- and interregional weights addresses the scale problem. Regions are 

actually treated as being parts of—usually overlapping—larger spatial units that comprise 

several regions. The intra- and interregional weights determine both the sizes of these larger 

spatial units, and the relative emphasis put on each of their member regions.  

Similar to the choice of the region-specific weights, reference, and projection function, the 

choice of the spatial weights is subject to the underlying research hypothesis, and may depend 

on the specificities of the industry under study. If distance-sensitive interactions like trade, 

commuting, or intra-industry spillovers are considered the main determinants of the regional 

interdependencies, the geographical weights may be operationalized by some functions of the 
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geographical or economic distances between any two regions, i.e., by φrq = φ(Drq), where Drq 

denotes the distance between the regions q and r, and ∂φ/∂Drq < 0. Examples of such distance-

related spatial weight functions are the exponential distance decay function in which 

φrq = exp(-δDrq), and the linear distance decay function in which φrq = (D*–Drq)/D* for 

Drq ≤ D* and φrq = 0 for Drq > D*. δ (δ > 0) denotes the distance decay parameter, which 

reflects the percentage of spatial loss per unit of distance, and D* the threshold distance at 

which regional interdependencies are assumed to approach zero. Alternatively, geographical 

weights may be operationalized by a variety of other forms of spatial weights (see, e.g., 

Anselin 1988), including weights based on the existence or the length of a common border, or 

on the k-nearest neighbors principle.  

One possible way to specify unobservable intraregional distances is to assume that all work-

ers are concentrated at a single regional center. In this case, Drr = 0 (but φrr > 0), and the inter-

regional distances are merely the distances between the regional centers. Other possible ways 

are to assume that all workers are distributed uniformly over space within each region, or to 

estimate the intraregional distributions from a finer partition of regions provided, for example, 

by population or electoral statistics. 

It should be noted that, due to geographical smoothing, spatial concentration measures usually 

assume lower values than their aspatial counterparts. More specifically, for given Li(r), Π(r), 

and W(r), spatial concentration measures assume a minimum value of zero for uniform spatial 

weights, i.e., for φrq =1 ∀ r, q = 1, …, R, and a maximum value equal to that of the corre-

sponding aspatial measure for zero interregional weights, i.e., for φrq = 0 for q ≠ r and φrq = 1 

for q = r. Moreover, decomposing the spatial GE measures in the usual way is not possible 

due to the geographical smoothing (Reardon and O’Sullivan, 2004). The regional interde-

pendencies introduced by the geographical weights usually do not allow the set of regions 

under study to be divided into a smaller set of geographical units such that regional interde-

pendencies do not extend beyond the boundaries of these geographical units. 

For georeferenced microdata that provide information on the distances between any pair of 

establishments, Duranton and Overman (2005; 2008) and Marcon and Puech (2003; 2005) 

propose describing concentration using functions based on the Ripley’s K function. These K-

based functions, which assign each possible distance a frequency of observations, arguably 

provide the currently most sophisticated measures of concentration because they avoid the 

checkerboard problem and the MAUP. The spatial disproportionality measures proposed in 



 23

the present section are an alternative to the K-based functions. Both approaches may in 

principle be used to analyze aggregate or disaggregate data. For any given level of regional 

aggregation, they are capable of dealing with the checkerboard problem and the MAUP to a 

similar extent.  

5. Conclusion 

This paper improves and extends the methodological toolbox for analyzing the regional con-

centration of industries and the industrial specialization of regions. First, it proposes a taxon-

omy of disproportionality measures of concentration and specialization. These disproportion-

ality measures can be adjusted more flexibly to the research purpose and data at hand than the 

inequality measures used in the concentration and specialization literature so far. The taxon-

omy gives rise to a modular construction system that enables a researcher to unambiguously 

define the disproportionality measure using three characteristic features: the weighting 

scheme, the reference distribution, and the projection function. Each feature can be deter-

mined largely independently of the other two features. The modular construction system is 

also useful for systematically evaluating the robustness of the inferences against a variation of 

the individual features of the measure.  

Second, the paper extends and generalizes the proposed taxonomy to disproportionality meas-

ures of economic localization, and to spatial disproportionality measures of concentration. 

Measures of localization evaluate concentration and specialization patterns simultaneously, 

and, through decomposition, render possible a nested analysis of the localization, specializa-

tion, and concentration patterns at different spatial and industrial scales. Spatial measures of 

concentration help address the checkerboard problem and the MAUP, thus posing a promising 

alternative to K-based statistics. Using spatially weighted sums or averages of the relevant 

data as an input, the spatial measures allow the specific characteristics of neighboring regions 

as well as the intra-regional distributions of the variable of interest and the reference to be 

taken into account.  

We are confident that the taxonomy of disproportionality measures proposed in this paper will 

prove useful for a wide range of empirical studies on concentration, specialization, and local-

ization. It should also prove useful for empirical studies of other economic issues that are 

subject to similar conceptual problems, such as studies of regional income inequalities or 

international trade patterns. Future research should contribute to extending and refining the 

disproportionality measures and their taxonomy in several respects. First, the taxonomy 
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should be generalized to spatial localization measures. Second, ways of coping with the 

counterparts of scale, arbitrary boundary, and checkerboard problems in the sectoral dimen-

sion should be explored. Unlike the spatial dimension, where geographical distance or travel-

ing time is widely accepted as a metric for relating the locations of individual units to each 

other, the sectoral dimension is still lacking a widely accepted metric. A metric for the dis-

tances between industries may be based on the coefficients of input-output tables, or on 

proxies of the similarity of the firms or industries in terms of their input markets, output mar-

kets, or technologies (see Conley and Dupor 2003; Bloom et al. 2005). Based on distances 

between basic units in both the regional and the sectoral dimension, the spatial localization 

measures may be extended to spatially and sectorally weighted localization measures that 

account for the checkerboard problem and the MAUP in both dimensions. Third, the com-

parative pros and cons of the spatial disproportionality measures and the K-based functions 

should be investigated in more detail for both micro and macro data. Finally, the reliability of 

statistical tests for assessing the significance of changes of measures over time, or of the dif-

ferences between the measures for two regions or industries, needs to be explored in detail.  
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Appendix 1: Upper Bounds and Standardization of Disproportionality Measures 

All the disproportionality measures discussed in this paper have lower bounds of zero, which 

they take under perfect proportionality. The measures do differ, however, with respect to their 

upper bounds, which may, but need not, exist.20 All disproportionality measures for which an 

upper bound exists can be normalized to vary between 0 and 1 by dividing the measures by 

their respective upper bounds.  

Disproportionality measures of concentration (see Section 2) take their maximum value (if 

such a value exists) if the industry under study is maximally concentrated. For given weights 

and references, the industry is maximally concentrated if all employment in the industry is 

concentrated in the smallest region in terms of basic units, such that Lia = Li• and Lir = 0 for 

r ≠ a, where a indexes the smallest region. As a consequence, the upper bound just depends 

on the smallest region-specific weight, wa = minrwr, as well as the projection function, but not 

on the references. For the GE measure in equation (8), the upper bound is given by 

( )[ ] ( )11 11
,)( −−= −− α

α αα aUBi wGE  for α > 0. For the other disproportionality measures of 

concentration given in Table 1 the upper bounds are given by Ti,UB = ln(1/wa), 

CVi,UB = ((1/wa) – 1)0.5, RMDi,UB = 2(1–wa), and Gi,UB = (1–wa). Note that for unweighted 

measures, all regions are of equal size in terms of basic units, so that wa=1/R. 

Disproportionality measures of localization (see Section 3) take, for given weights, refer-

ences, and projection function, their maximum value if all employment is clustered in the 

smallest region-industry (indexed by ba) in terms of basic units such that Lir = L•• for 

i = b ∧ r = a, and Lir = 0 otherwise. As a consequence, their upper bound depends only on the 

smallest region-industry-specific weight, wba = minirwir, as well as the projection function, but 

not on the references. The upper bound of a GE(α) measure of localization with α > 0 is, for 

example, given by ( )[ ] ( )11 11
)( −−= −−Π α

α αα ba
W

UB wGE .21  

Spatial disproportionality measures of concentration (see Section 4) take their maximum 

value if the industry is concentrated in a single region, similar to their aspatial counterparts. 

Calculating the upper bounds of spatial concentration measures is, however, somewhat more 

                                                 

20  An upper bound does not exist for GE measures with α < 0.  
21  Again, the GE measure is unbounded for α < 0. The upper bounds for the other projection functions in Table 

2 can be determined analogously to GE with α > 0.  
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tedious because these upper bounds usually depend on all region-specific weights, the whole 

reference distribution and all spatial weights. For given region-specific weights, references 

and spatial weights the upper bound of the spatial GE(α) measure (11) with α > 0 is, for 

example, obtained by solving 
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where a indexes the region hosting all industry i employment under maximal concentration.22  

Working with standardized disproportionality measures may have both advantages and dis-

advantages. On the one hand, working with standardized measures may facilitate comparisons 

across different spatial or sectoral units, or different spatial or sectoral scales. For unweighted 

measures of concentration, for example, where the upper bound depends on the number of 

regions, one may argue that a comparison of the concentration of a particular industry across 

countries with different numbers of regions is more meaningful when using standardized 

measures that “control” for the number of regions.23 On the other hand, changes in standard-

ized measures over time may be largely determined by changes in their upper bounds. This 

may be particularly problematic for weighted specialization measures if the size of the small-

est industry changes significantly and sometimes quite erratically over time, as may easily 

happen with sectorally highly disaggregated data.24  

Appendix 2: Defining Gini disproportionality measures 

Like the RMD, the Gini coefficient is an intuitively appealing ad hoc measure. It meets the 

requirements of the axiomatic approach, including decomposability, only under specific con-

ditions. The Gini coefficient is generally defined as two times the area between the Lorenz 

curve and the 45° line (shaded area in Figure A1) in a box plot of cumulated shares of indi-

                                                 

22 Generally, the region that solves the maximization problem has to be determined by way of simulation. 
23 One may also argue, however, that the dependence of nonstandardized measures on the number of regions is 

actually desirable, since an industry that is concentrated in just one region may intuitively be considered less 
concentrated in a country that has just two regions than in a country that has many regions.  
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viduals in the population on the horizontal axis and the cumulated shares of their characteris-

tics on the vertical axis.  

In terms of the taxonomy of the present paper, the population, depicted on the horizontal axis, 

consists of the basic units, whose shares are represented by the (relative) region-specific 

weights, wr. The characteristics, depicted on the vertical axis, are the weighted region-specific 

proportionality factors, whose shares are represented by )(
r

ir

r

ir
Π
L

rrΠ
L

r ww ∑ . All observations 

are sorted in ascending order by the region-specific proportionality factors, Lir/Πr. This con-

vention gives rise to  
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Figure A1. Lorenz Curve of Regional Concentration  
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24  Note that the disproportionality measures obtained by decomposing a 0-1 normalized GE measure (see 
Section 2 and Appendix 3) are not 0-1 normalized. 
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as the general form of all Gini disproportionality measures of concentration (see Table 1). 

This general form includes as special cases all Gini coefficients used in the literature on con-

centration (and specialization). k in equation (A.1) and Figure A1 indexes the observation 

with the kth lowest region-specific proportionality factor. Note that the expression in the sec-

ond line of (A.1) is computationally more expensive but does not require sorting observations. 

The Gini coefficients for the various basic units and references can be defined along the same 

lines as the RMD and GE measures discussed in Section 2 (see Table 1). 

Appendix 3: Decomposing GE Disproportionality Measures of Localization 

Table A1 gives an overview of the measures that can be obtained through decomposition of a 

Theil index of localization of a nation (country) by state, county, sector and/or industry. The 

rows in Table A1 determine the level of regional aggregation of the measure and the under-

lying data, which is assumed to be either the nation, the state, or the county level. The col-

umns in Table A1 determine the level of industrial aggregation of the measure and the un-

derlying data, which is assumed to be either the total economy, the sector level (agriculture, 

manufacturing, services), or the industry level. The county-industry level is assumed to be the 

most disaggregated level for which data is available. The upper left quadrant of Table A1 

summarizes all the localization measures, the upper right all the concentration measures and 

the lower-left all the specialization measures that can be investigated in this setting. 

The Theil index given in the upper left cell of the Table, cell (1 [row], 1 [column]), is the 

Theil index of localization across all counties in the nation and all industries in the economy. 

It is denoted by )(irT loc
•• . The superscript “loc” indicates that this measure is a localization 

measure (“conc”: concentration; “spec”: specialization), and the subscript “ ” that it covers 

the entire nation and economy. The term “ir” in parentheses indicates that this measure is cal-

culated using data at the level of industries and counties (j: sectors; s: sectors). )(irT loc
••  is the 

most comprehensive localization measure. It summarizes all the heterogeneity among the 

county-industries in a single measure. It can be decomposed in a variety of ways.  

To give an example, the overall localization measure, )(irT loc
•• , may be stepwise decomposed 

first by sectors, then by states, and finally by industries. The decomposition by sectors in the 

first step is informative as regards the contributions to the overall localization of the localiza-

tions (across industries and regions) of the individual sectors on the one hand, and the sectoral 
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specialization of the country on the other. As a within component, this decomposition yields 

the weighted average of the Theil indices of localization within each sector, )(irT loc
j• , given in 

cell (1,3) of Table A1. As a between component, it yields the Theil index of sectoral speciali-

zation of the nation, )( ••• jT spec , given in cell (4,2) of Table A1. In formal terms, this 

decomposition yields  
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where j (j = 1, …, J) indexes sectors, Ij denotes the number of industries in sector j, and 
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The decomposition of each sector-specific localization index, )(irT loc
j• , by states in the second 

step is informative as regards the contributions to this sector’s localization of the localizations 

(across industries and regions) of this sector within the individual states on the one hand, and 

the concentration of this sector across states on the other. As a within component, this decom-

position yields the weighted average of the Theil indices of localization by state and sector, 

)(irT loc
js , given in cell (3,3) of Table A1. As a between component, it yields the Theil index of 

regional concentration of the employment in a sector across states, )( sT conc
j •• , given in cell 

(2,5) of Table A1. Formally, 
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where s (s = 1, …, S) indexes states, Rs denotes the number of counties in state s, 
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Finally, the decompositions of each sector- and state-specific localization measure, )(irT loc
js , 

by industries in the third step is informative as regards the contributions to this state-sector’s 

localization of the concentrations (across regions) of the individual industries within this sec-

tor on the one hand, and the industrial specialization of the state-sector on the other. As a 

within component, this decomposition yields the weighted average of the Theil indices of the 

regional concentration of each state-industry across counties, )( rT conc
is • , given in cell (3,6) of 

Table A1. As a between component, it yields the Theil index of industrial specialization of 

each state-sector, )( •iT spec
js , given in cell (5,3) of Table A1. Formally, 
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