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1. Introduction

The international community has become increasingly concerned about rising carbon
dioxide (CO,) emissions that have risen in parallel with China’s strong growth (Rosenthal,
2008). In 2009, the total CO, emissions of China reached 7.7 billion tons, accounting for
roughly 24% of total global emissions’. As one of the leading CO, emitters in the world, China
has become the focus for global greenhouse gas abatement.

The Chinese government has set about reducing its greenhouse gas emissions. In 2009,
the central government of China declared its target for limiting greenhouse gas emissions,
namely to reduce the carbon intensity (CO, emissions per unit GDP) by 40-45% by the year
2020, compared with 2005 levels. Under the 12" Five Year Plan, China furthermore set a
carbon intensity reduction target of 17% to be achieved by 2015, compared with 2010
levels®.

But what scope do China’s industries have to curb these emissions without damaging
economic growth? Being able to properly assess the marginal abatement costs is an
important first step for global climate negotiations with China. Not only because helps
China’s international partners to persuade China of the need to curb emissions but it helps
inform the debate by guiding the choice of a more efficient burden-sharing rule and
abatement mechanism. Importantly for China, an accurate cost assessment helps to shape a
broad range of domestic environmental policy issues, i.e., it can be used to guide carbon tax
rate setting, emission permits trading and regional allocation of reduction obligation, etc.

(Fare et al., 1993; Wei et al., 2013).

This is the question that our analysis sets out to answer. There is some evidence at the
firm level, industrial level or provincial level for earlier time periods shedding light on China’s
CO, abatement cost, but most of those studies have approached the question using
non-parametric method or parametric Shephard distance function respectively. Our analysis
draws on the novel and more flexible parametric directional output distance function

approach which allows us to capture the advantages of differentiability and non-proportional

! The data is derived from the World Bank, http://data.worldbank.org/indicator/EN.ATM.CO2E.KT?display=graph.

2 For those not familiar to China’s Five Year Plans, these are a series of economic and social development initiatives, which
outline the directions, targets and methods of development. The first Five Year Plan begins in 1953, and the most recent
one is the 12" Five Year Plan covering the year 2011-2015.




changes in outputs (simultaneous contraction of bad output and expansion of good output).
These properties are particularly attractive, since the former promises the uniqueness of
shadow price while the latter does not rule out a ‘double-dividend’ of emissions reduction
and economic growth which is what the policy-makers are generally interested in.

We find that the environmental technical inefficiency of China increases for the whole
sample period and it is possible for China to further reduce the CO, emissions by 4.5% in the
10" Five Year Plan and 4.9% in the 11" Five Year Plan if all the provinces produce on the
production frontier. The shadow price of CO; reduction in China also increases continuously
for the whole sample period with regional differences, corresponding to an annual growth
rate of 8%, but the growth speed in the 11" Five Year Plan is much higher than that in the
10" Five Year Plan. The increasing absolute value of substitution elasticity indicates the
difficult reality of reducing China’s CO, emissions.

The remainder of the paper is organized as follows: section 2 reviews the previous
literature. Section 3 is the theoretical model. Section 4 presents the empirical specifications.
Section 5 describes the data. Section 6 reports the estimation results. We conclude in the

last section.

2. Literature Review
Recent developments in shadow prices of non-marketed pollutants allow the
researchers to estimate the marginal abatement cost of CO, reduction without price and cost

information (Fire et al., 1993; Fire et al., 2005)3. Typically, the analysis is performed by

modeling pollutants as by-product bad outputs under a multi-input multi-output
environmental production technology framework. Then the output distance function is
employed to derive the shadow prices of CO, reductions by using the duality between the
output distance function and the revenue function.

There are two widely used output distance functions in previous studies. The Shephard

output distance function assumes a proportional adjustment for all outputs (Shephard et al.,

3 Integrated system models also have been employed to estimate the marginal abatement cost of CO, reductions, see
Zhang and Folmer (1998), Criqui et al. (1999), Tol (1999), Chen (2005), Morris et al. (2012), etc. The most controversial
aspects of these models are settings of the baseline scenarios and structural characteristics of the models (Fischer and
Morgenstern, 2006; Marklund and Samakovlis, 2007).




1970). In contrast, the newly developed directional output distance function allows a
simultaneous expansion of good outputs and contraction of bad outputs along the given

direction (Chambers et al., 1998; Chung et al., 1997) *. Relatively speaking, the directional

output distance function is a more appropriate metric for measuring performance in the

presence of bad output under regulation (Fare et al., 1993; Fare et al., 2005).

There are two strategies to estimate the output distance function and shadow price.
One is the non-parametric approach, namely Data Envelopment Analysis (DEA), which
constructs the output possibility set as a piecewise linear combination of all observed
outputs and inputs. It is a data-driven technique and has been widely used in efficiency

evaluation (Boyd et al., 1996; Bovyd et al., 2002; Fare et al., 2007; Lee et al., 2002; Maradan

and Vassiliev, 2005) . However, the distance function estimated via DEA method is not

differentiable, thus it is less well-suited to the estimation of shadow prices and elasticity of

substitutions (Fare et al., 2005). Additionally, the DEA methods are plagued with a number of

other inaccuracies, such as how to deal with outliers (Vardanyan and Noh, 2006).

Apart from DEA, parametric estimation represents a further method to investigate
environmental bads. It pre-assumes a specific functional form for the distance function and
then estimates the parameters of the distance function. Once the parameters have been
estimated, it is easy to calculate values of the distance function, the shadow price and the
substitution elasticity. In empirical analysis, the Shepherd output distance function is usually
specified as a translog functional form, while the directional output distance function is
usually specified as a quadratic functional form®. In the past two decades, a large number of
studies emerged to investigate the marginal abatement cost of various pollutants with the

parametric method (Coggins and Swinton, 1996; Fare et al., 1993; Fare et al., 2005; Fare et al.,

2006; Murty et al., 2007; Reig-Martinez et al., 2001; Swinton, 1998, 2002, 2004; Vardanyan

and Noh, 2006).

However, only a few papers have investigated the marginal abatement cost of CO,

emissions directly for China®. In these previous studies, both parametric and non-parametric

4 Essentially, the directional output distance function is a complete generalization of the Shephard output distance

function.

5 Itis not feasible to specify the directional output distance function as a translog functional form since the translation
property of the directional output distance function will be violated.

® Some papers investigate the marginal abatement cost of SO, emissions in China, such as Ke et al. (2008), Kaneko et al. (2010),
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methods have been used, but there is little consensus on the magnitude of the estimated
shadow prices which are widely dispersed.

Some studies focus on industrial level or firm level shadow prices estimations. Lee and
Zhang (2012) estimate the shadow prices of CO, emissions for 30 Chinese manufacturing
industries in 2009, based on a parametric Shephard/translog specification. Their results show
that the shadow prices vary from a high of 18.82 dollars/ton to a low of zero, with an average

of 3.13 dollars/ton. Yuan et al. (2012) estimate the shadow prices of CO, reductions for the

industrial sector in China applying DEA and they find that the shadow prices are lie a range of

200 Yuan/ton to 0.12 million Yuan/ton. Wei et al. (2013) investigate the shadow prices of
Chinese thermal power enterprise in 2004, using a parametric quadratic functional form.
Their findings suggest that the shadow price for a representative power enterprise in
Zhejiang reaches a mean of 2059.8 Yuan/ton.

Some studies focus on provincial level shadow price estimations. Wang et al. (2011) find

that the average provincial shadow price of CO, reduction is about 475 Yuan/ton in 2007,
based on the directional distance function and non-parametric DEA method. Choi et al.
(2012) estimate the provincial marginal abatement costs of CO, emissions of China for the
year 2001-2010, by employing a slack-based DEA model. They find that the average shadow
price of CO, emissions in China has increased gradually from 6.94 dollars/ton in 2001 to 7.44

dollars/ton in 2010. Wei et al. (2012) report a mean shadow price of 114 Yuan/ton for 29

provinces in China over period 1995-2007, based on a slack-based DEA approach.

From the above literature, we find that all of the previous studies on the provincial
shadow price of CO, reduction in China are based on non-parametric DEA methods or
parametric Shephard/translog specifications. As we have mentioned above, the
non-parametric DEA method is less well-suited to the estimation of the shadow price and
substitution elasticity because of its non-differentiability, whereas the parametric
Shephard/translog specification confines itself to the case of proportional adjustment of
good and bad outputs. Accordingly, the translog specification is not an appropriate metric for
measuring performance changes where bad outputs are subject to outside regulation.

The novelty of our paper is to investigate, for the first time, provincial shadow prices of

Ke et al. (2010), Tu (2010), etc.




CO; reductions in China based on a more reliable directional output distance function which
is estimated parametrically. Furthermore, we estimate the provincial Morishima substitution
elasticity for China. In so doing, we aim to provide new insights to inform the debate on an

optimal emissions policy in China.

3. Theoretical Model
What follows is the theoretical model underpinning our approach. We start by
introducing the directional output distance function, and then deriving shadow prices of bad

outputs and the Morishima substitution elasticity.

3.1 Directional Output Distance Function

Suppose that a producer employs a vector of inputs X =(X,....Xy) € R+Nto produce a
vector of good outputs y=(y,,...Y,)eR"Y and a vector of bad outputs
b=(b,...b,) e R’ . Production technology can be defined as the following output set:

P(x) ={(y,b):x can produce (y,b)} (1)
Besides the standard assumptions of compact and freely disposable in inputs, we need
to impose some additional assumptions on the output set. First, we assume that the bad

outputs are jointly produced with the good outputs. Formally, if (y,b)eP(x) and b=0,

then y =0, which implies that no good output can be produced without simultaneously
creating bad output. Second, we assume that good outputs and bad outputs are together
weakly disposable, i.e., if (y,b)eP(x) and 0<6#<1, then (8y,0b)eP(x) . Weak
disposability means that any proportional reduction of good and bad outputs together is

feasible, which implies any reduction of bad output carries a cost. At the same time, we

retain the traditional assumption that good outputs by themselves are freely disposable.
Formally, free disposability implies that if (y,b)eP(x) and y'<y, then (y'b)eP(x).

This indicates that it is always possible to dispose of some of good outputs without incurring

an extra cost.



The directional output distance function represents in function form the production
technology in line with the above assumptions. Formally, the directional output distance

function is defined as
D, (x,y.b;g,,~9,) =max{£: (y + 59,.b~ 59,) € P()} (2)
where g=(9,,0,)€ R xR is a directional vector which specifies the direction of the

output vector. The directional distance function describes the simultaneous maximum
expansion of good outputs and contraction of bad outputs that is feasible for any given
production technology.

Good outputs=y

A
slope=-g/p
w‘gw b-8'g»)
. A b
£=(8,.-2») 02
P(x)
0 L
Bad outputs=b

Figure 1: Directional Output Distance Function

Figure 1 depicts such a function. Given the production technology P(x) and the direction

vector g =(g,,0,) >0, the directional output distance function expands good output y and

contracts bad output b in the g direction until it reaches the boundary of P(x). For an
observation A(y, b) that lies within production set P(x), it is possible to increase y and reduce

b simultaneously before hitting the boundary of the production set at point
B(y+B*g,, b—pB*g,), where 8" =D,(x,y.b;g,,~9,)

The directional output distance function describes inefficiency. A zero value of S
means that this producer is located on the frontier, while a positive value of [ reflects the

existence of inefficiency. The producer can achieve an expansion of good output and

simultaneously reduce bad output in order to reach the frontier in the g direction. A higher



value of S implies higher inefficiency, in other words, lower efficiency.

The directional output distance function inherits its properties from the output set P(x).

According to Fare et al. (2005), these properties include:

a) [30(x, y,b;g,,-9,) >0 if and only if(y,b) is an element of P(x)
b) B, (x,y',b;9,.,—9,) = D,(x,y,b;g,,—g,) for (y',b)<(y,b) e P(x)
c) D,(x, y.b’;9,,-9,) = D, (x, y.b;9,,-9,) for (y,b)>(y,b) e P(x)
d) D, (x,0y,6b;g,,-9,) >0 for (y,b)eP(x) and 0<g<1

e) f)o(x, y,b;g,,-9,) is concave in (y,b) € P(x)

The first property indicates that DO(X, y,b;g) is non-negative for feasible output vectors.

The second property implies that DO(X, y,b;g) is monotonic in good outputs. The third

states that if bad outputs increase, holding inputs and good outputs constant, inefficiency
does not decrease. The fourth property corresponds to weak disposability of good and bad
outputs. The last property helps us to determine the sign of the output elasticity of
substitution.

Additionally, it is easy to verify that the directional distance function also satisfies the

translation property:

D,(x,y+ag,,b-ag,:9,,-9,) = D,(x,y,b;g,,-09,) -« (3)
where « is a scalar. This property means that if desirable output is expanded by «g, and
undesirable output is contracted by «g, simultaneously, then the resulting value of the

directional output distance function will be reduced by «, or in other words, the

inefficiency of the decision-making unit (DMU) will be reduced by the amount « .

3.2 Shadow Prices of bad outputs
To derive the shadow prices, we need to evoke the duality between the directional

output distance function and the revenue function.

Following Fare et al. (2006), we specify the revenue function of a DMU as follows:

R(x, p, ) = max{py—ab: D,(x,y,b;g) >0} (4)
y,b

where p=(p,,...,py)eRMand q=(q,...,q,)eR’ are the prices of good and bad



outputs respectively. The revenue function describes the largest feasible revenue obtainable
when the producer is faced with good output prices p and bad output prices
respectively.

If an output vector (y, b) is feasible, then the elimination of any inefficiency associated

with that output vector by moving in the direction g is also feasible, i.e. if (y,b) e P(x), then

(y+89,,b—B9,) € P(X) . Thus, given a feasible directional vectorg =(g,,g,), we have

R(x, p,g) > (py—ab)+p-D,(x,y,0;9)-9,+0a-D,(x ¥,b;9)-9,  (5)
The left side of equation (5) represents maximal feasible revenue while the right side
corresponds to observed revenue plus technical efficiency gains. The improvement in
technical efficiency can be decomposed into two components, the gain due to an increase in
good outputs along g, and the gain due to a decrease in bad outputs along gp.

Rearranging the formula (5), we have

B, (x y.b:g) < R(x, p,q) - (py —ab) (6)
P-9,+0-g,

Therefore, the directional output distance function can be derived from the revenue

function.

R(x, p,q)—(py—qb)} (7)

D,(x,v,0;9)=mi

Applying the envelope theorem twice to Equation (7), we get two first-order conditions:

Vylf)o(x,y,b;g)z_—IO (8)
P-9y,+0-9,

V,D, (X, y,b;g):# (9)
P-9y,+Q-9,

Given the market price of the m-th good output, we are able to derive the shadow price of

the j-th bad output.

oD, (x,y,b;1,-1)/éb, | .
4 =-p, | — Llj=1..,3 (10)
! oD, (x,y,b;1,-1)/ oy,

As shown in Figure 1 for the case of one good output and one bad output, the ratio of



the shadow price (-g/p) for an observation with coordinates (y, b) describes the slope of the
tangent line at the boundary of P(x). It reflects the trade-off between the bad and good

output respectively on the frontier of P(x) where the production is technically efficient.

3.3 Morishima Elasticity of Substitution

It is important to investigate how the good-bad output ratio of shadow price (the
curvature of the boundary of the production set) changes as the relative pollution intensity
(ratio of bad output to good output) changes. This basic idea underpins the Morishima

shadow price output elasticity of substitution (Blackorby and Russell, 1981).

Following Fare et al. (2005), the Morishima elasticity is defined as:

_0dIn(q/ p)
¥ 8lIn(y/b)

(11)

Equation (11) can be specified in terms of the directional output distance function as

M. =y 82[3:,(x,y,b;g)/8b8y_02[3:)(x,y,b;g)/8yay 12)
v oD, (x,y,b;g)/ b oD, (x,y,b;g)/ oy

where y* =y + DO(X, y,b;l,—l). It is easy to prove that the sign obey is negative under
certain conditions. Values of M, that are more negative indicate that a given change in the

ratio of good output and bad output (y/b) will result in higher corresponding changes in the

shadow price ratio of bad to good outputs (g/p). That is to say that as the Morishima

elasticity M,, becomes more negative it becomes more costly for the DMU to reduce the

bad output.

4. Empirical Specifications
As we have mentioned above, the directional output distance function can be
alternately estimated parametrically or non-parametrically. In this study, we adopt the

parametric approach because of its advantage of differentiability. Following Chambers et al.

(1998), Fare et al. (2005) and Murty et al. (2007), we employ the quadratic form to

parameterize the directional output distance function. The quadratic function satisfies the

translation property and is twice differentiable and flexible. As Fare et al. (2005) have

10



suggested, we set the directional vector(g,,d,) = (1,1) to seek a simultaneous expansion of

good output and reduction of bad output.
We consider the case of three inputs, one good output and one bad output. Assume
that there are k=1,...,K provinces producing in t=1,...,T years. Then, the quadratic directional

output distance function for province k in year t can be represented as

. 3 13,38
Do (Xlt(' yli ! blz 71’ _1) =a+ Zanx:]k + ﬁly; + 7/1bli +Ezzann’xaerﬁ’k
n=1 n=1 n'=1
(13)

1 1 3 3
+Eﬁz(y|t<)2 +E7/z(bl:)2 +Z77nxrt1kbl: +Z5nxﬁk ylt< +,uy|t<b|§
n=1 n=1

To capture the province and time effect, we add a set of province dummy variables and

time dummy variables in the intercept term of equation (13) as Fare et al. (2006) have done:

K-1 T-1
a=a,+ > A4S + .7, (14)
k=1 t=1

where 4, and 7, are the coefficients of the dummy variables. The province dummy

variable S, =1 if k"=kand 0 otherwise. Similarly, the time dummy variable 7, =1 if

t'=t and 0 otherwise.

Following the work of Aigner and Chu (1968), we employ a deterministic linear

programming algorithm to estimate the parameters of Equation (13) by minimizing the sum
of the deviations of the estimated directional output distance functions from that of the
frontier. The advantage of this approach is that it allows us to impose parametric restrictions

on the quadratic functional form’.

” The directional output distance function also can be estimated as a stochastic frontier, but this method cannot impose the
constraints on the econometric estimation and only can test the constraints ex-post.

11



T

min > > (D, (%, V;.bi;1,-1)-0)

t=1 k=1
st. (i) D,(x,yi,bL,-1)>0k=1..K;t=1..,T
(i) D,(x.,y.,0,1,-1) <0,k =1,..K;t=1,..., T
660()(:(! yltublz 1 _l)

~

(iii) >0,k=1..Kit=1..T
ab 5
S oyt oyt Rte1 15
v) Poe¥ebih=) oy 4 woioq 7
oy
S v oyt pte1
v) PeEVeBGL=D oy o gy Kiter T
oX,
Vi) Bp—-n=-LB,=y,=u,6,-1n,=0, n=123
(i) e, , =, ,, n,n"=123

The first set of restrictions (i) ensures that all observations are feasible. This implies that
each observation is located either on or below the boundary. The null-jointness property is
imposed by the restrictions in (ii), which means that, for y>0, the output bundle (y, 0) is not

technically feasible (Marklund and Samakovlis, 2007). The monotonicity assumption in bad

and good outputs is imposed by the inequality (iii) and (iv) respectively, which ensures the

correct sign of the calculated shadow prices. Following Fare et al. (2006), we also impose

positive monotonicity constraints on the inputs for the mean level of input usage in (v),
which means that, at the mean level of inputs, an increase in input usage holding good and
bad outputs constant causes the directional output distance function to increase. The
parameter restrictions given by (vi) impose translation property. Additionally, the symmetry
restrictions are imposed in (vii).

Once the parameters of the directional output distance function have been estimated,
we are able to calculate the shadow price of the bad output and Morishima substitution
elasticity for each province in each year. The shadow price of the bad output can be written

as

+r,b+>° nx +
q:_p71 V2 zn:ﬂnn MY (16)

Bt By +Y . 8%, + b

and the Morishima substitution elasticity can be written as

12



M,, = y* r - - (17)
nArhruy+Y X, BALy+ub+) 8X,

5. Data and Descriptive Statistics

We consider the case of one good output, annual regional Gross Domestic Product (Y),
one bad output, carbon dioxide emissions (B), and three inputs, labor (L), capital (K) and
energy (E). Our data is provincial level aggregate data that covers 30 provinces of China.
Given that China’s energy-conservation and pollutant-abatement program was launched at
the beginning of 2001, our sample covers the period 2001-2005 (10th Five Year Plan) and
2006-2010 (11th Five Year Plan), constituting a province-by-year panel dataset®.

To eliminate the influence of inflation, we deflate GDP to the 2005 price. The input of
labor force is measured as number of employed persons at the end of each year. The data of
GDP and labor input are both obtained from the China Statistical Yearbook. Energy
consumption is measured in standard coal equivalent, and the data is collected from the
provincial statistical yearbooks.

The data of capital stock is not directly available from any of the statistical yearbooks.

However, we can estimate it by the following perpetual inventory method:

Ki,t = Ki,t—l(l_pi)+ Ii,t (18)

where |, and K; are grossinvestment and capital stock for province iinyeart, K; , is

it

the capital stock of province i in year t-1, and p, is depreciation rate. The values of initial

capital stock and depreciation rate are derived from Zhang et al. (2004), while the data of

annual investment is derived from the China Statistical Yearbook. Similarly, we depreciate the
data to the 2005 price.

The data of CO, emissions is neither directly available. Following the method provided
by IPCC (2006), we estimate the CO, emissions emitted through the burning of fossil fuels by
the following formula:

6
CO, = Y E, xCF, x CC, x COF, x(44/12) (19)

i=1

8 Tibet is excluded because of the problem of data availability.

13



where i is the index of different types of fossil fuel, including coal, gasoline, kerosene, diesel,
fuel oil and natural gas. The variables E;, CF;, CC; and COF; represent total consumption,
transformation factor, carbon content and carbon oxidation factor of fuel i, respectively. The
term 44/12 is the ratio of the mass of one carbon atom combined with two oxygen atoms to
the mass of an oxygen atom. The data of provincial fuel consumption are taken from the
regional energy balance tables in the China Energy Statistical Yearbook. The other

coefficients needed are derived from Du et al. (2012).

Table 1: Summary Statistics for Inputs and Outputs, 2001-2010

Inputs good output bad output

Region Labor Capital Energy GDP CO, emissions

(10000 persons) (100 million Yuan) (10000 tons) (100 million Yuan) (10000 tons)

2301 15808 8921 7535 16949
China

(1523) (13857) (6336) (6903) (12437)

2495 24427 11721 12180 21639
#East

(1704) (17365) (8122) (8778) (15864)

2758 13831 9054 6642 18231
#tMiddle

(1434) (8594) (4250) (3410) (8730)

1775 8628 6025 3540 11326
#West

(1223) (6463) (3831) (2598) (7881)

Note: standard deviation in parenthesis.

Table 1 lists the descriptive statistics of inputs and outputs for China and three different
regions.9 The means and standard deviations of the variables are reported in the table. From
Table 1, we can observe that the means of GDP and capital stock in east region are both
much higher than that of middle and west regions. Meanwhile, the east region consumes a

higher amount of energy and emits more CO, emissions.

® East region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and
Hainan. Middle region includes Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei and Hunan. West region includes
Inner Mongolia, Guangxi, Sichuan, Chongging, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang.

14



6. Empirical Results
To avoid the convergence problem, we normalize the data by dividing each output and

each input by their mean values respectively (Fare et al., 2005). This normalization means

that (x,y,b)=(111) for a hypothetical province using mean input to produce mean
outputs.

6.1 Technical Inefficiency

The parameter estimates for the quadratic functional form of the directional distance
function (13) are obtained by solving the linear programming (15) using MATLAB (the
estimated parameters are reported in Appendix Table 1A). Once the parameters are obtained,
we are able to calculate the directional output distance functions for each province in each
year by inserting the estimated parameters back into the equation (13). The directional
output distance function serves as a measure of technical inefficiency since it gives the
maximum unit expansion of the good output and contraction of the bad output. If the
directional distance function equals zero, then we say that the production is fully efficient. A
positive score means the presence of inefficiency in the production process. A higher score

of the directional output distance function means a higher technical inefficiency.
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Figure 2: Kernel Density of Directional Output Distance Functions
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Figure 2 plots the kernel densities of the estimates of provincial directional output
distance functions for selected years (more detailed estimation results are reported in
Appendix Table 2A)™. From Figure 2, we can observe that the kernel density curves move
rightward. The peaks of the curves become lower and the directional output distance
functions become more dispersed as time elapses, indicating that the mean and variance of

the technical inefficiency have increased during the period 2001 to 2010.
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Figure 3: Average Technical Inefficiency by Region

Figure 3 further reports the average values of directional output distance functions of
the three different regions and the whole country (more detailed results are reported in
Appendix Table 2A). From Figure 3, we can observe that the average technical inefficiency of
the whole country of China has increased for almost the whole sample period. The dynamic
trends of the average technical inefficiency for the three regions show great disparity. The
curve for the east region fluctuated, while that of the west and middle regions, especially for
the west region, increased sharply and continuously for the whole sample period. We also
can find that the average technical inefficiency of the east region is much higher than that of
the west and middle regions during the period 2001 to 2010.

Traditionally, the east region of China becomes much more developed than the west

10 Epanechnikov kernel function and optimal bandwidth are used.
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and middle regions following the economic reform of 1978. To achieve more balanced
regional development, the central government of China began to implement a so-called
“Western Development” program after 2000. The development of middle region has also
been a focus for policymakers since 2004. Many energy-intensive firms formerly located in
the east region have been moved to the west and middle regions since then, while the east
region has increasingly increased its composition of service and high-tech firms. Thus, it is
not surprising that the average inefficiency seen in the west and middle regions has
increased more rapidly than that of the east region. In essence, what Figure 3 highlights is
the evolving composition of China’s industry with the displacement of heavy industry to the

Western region.

6.2 Reduction Potential of CO, Emissions
The derived values of directional output distance functions allow us to further measure

the feasible reduction potentials of CO, emissions by the following formula:
Abit = bit _(bit _ﬂitgb) (20)
where b and S, are the quantity of CO, emissions and the estimated technical inefficiency

score of province i in year t, and g,is the directional vector for the bad output.

b, = (b, — $,9,) is the minimum attainable level of emissions for province i in year t when

production processes are fully efficient. There is considerable heterogeneity among the
provinces when it comes to the scale of potential emissions. This makes it difficult to
compare each province’s relative ability to reduce emissions based on its size and output. To
facilitate this comparison, we take the scale of potential emissions (estimated) and divide it
by the real observed emissions for each province. This gives us a ratio which can be used to

compare across regions.
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Figure 4: Average Reduction Potential by Region
Figure 4 plots the within-region abatement potential ratio for the three regions and the
whole country’. From Figure 4, we can observe that the patterns of the abatement potential
ratios reflect the data for technical inefficiencies. It is not surprising since the abatement
potential ratios are calculated from technical inefficiency scores. At the country level, the
percentages of abatement potential ratios fluctuate between about 4-6%, which indicates
that it is possible for China to further reduce about 4-6% of CO, emissions conditioned on all

provinces producing at their most efficient level.

6.3 Shadow Prices of CO, Emissions

According to equation (16), if the parameters and the price of the good output are
known, then we may compute the absolute price for the bad output. We need to inflate the
formula by multiplying by the ratio of the mean value of GDP to the mean value of CO,
emissions since we have normalized the input and output data. Without loss of generality,

the price of the good output, GDP, can be set to be 1.

1 More detailed analytical results are available from the authors on request.
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Figure 5: Kernel Density of Shadow Price

Figure 5 plots the kernel densities of the shadow prices for selected years. From the
figure, we can observe that the kernel density curves shift rightward over time, and the
dispersion range of points becomes wider, indicating that the mean value and the variance of
the shadow prices have increased. In 2001, the shadow price has a mean of 1000 Yuan/ton
and ranges from 100 Yuan/ton (Henan) to 1800 Yuan/ton (Shanghai). The distribution of
shadow price in 2010 seems significantly differ from the 2001 case. To cut an additional ton
of CO, emissions by the end of 2010, the cost rises to 2100 Yuan. The spectrum of shadow
price in 2010 exhibits a greater variation, ranging from 900 Yuan/ton (Guizhou) to 5700 Yuan
(Jiangsu). For the year 2001, 2004 and 2007, the shadow prices of most of the provinces are
lower than 2000 Yuan, but the number of the provinces with a shadow price higher than

2000 Yuan increased dramatically in 2010.
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Figure 6: Average Shadow Price by Region

Figure 6 furthermore plots the average shadow prices of the three different regions and
the whole country (more detailed shadow price estimates are reported in Appendix Table
3A). From the figure, we can observe that the average shadow price of CO, abatement for
the whole country of China has increased continuously and sharply for the period 2001 to
2010. Specifically, this increase amounted to about 1000 Yuan/ton in 2001 to more than
2000 Yuan/ton in 2010. This corresponds to an annual growth rate of about 8%. To put this
figure in context, the growth rate of the shadow price during period 2006 to 2010 is
significantly higher than growth in the earlier period. The regional shadow prices are
unbalanced. The average shadow price of east region is much higher than that of the west
and middle regions. It indicates that it is more expensive for the east region to control the
CO, emissions compared with the middle and west regions. This makes sense, since the
carbon intensity of the east region is much higher than that of the west and middle regions.

Table 2 compares our results with those of previous studies. The results of these
previous studies lie in a pretty wide range depending on their usage of different dataset and

estimation method.
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Table 2: Comparison with Previous Studies

studies Method Period Sample Shadow Price
(mean)

Wang et al. (2011) DEA 2007 30 provinces 475.3 Yuan/ton

Choi et al. (2012) DEA 2001-2010 30 provinces 6.54-7.44
dollars/ton

Lee and Zhang (2012) SDF+LP 2009 30 industries 3.13 dollars/ton

Yuan et al. (2012) DEA 2004, 2008 | 24 industries 200-120300
Yuan/ton

Wei et al. (2012) DEA 1995-2007 30 provinces 114 Yuan/ton

Wei et al. (2013) DDF+LP 2004 124 power | 2059.8 Yuan/ton

DDF+LM plants 612.6 Yuan/ton
This study DDF+LP 2001-2010 | 30 provinces 1000-2100 Yuan/ton

Note: SDF, DDF, LP, LM, DEA denote Shephard Distance Function, Directional Distance Function, Linear Programming,

Maximum Likelihood, Data Envelopment Analysis, respectively.

Wang et al. (2011) find that the average provincial shadow price of China is about 475

Yuan/ton in 2007, Wei et al. (2012) report a mean provincial shadow price of 114 Yuan/ton

over the period 1995-2007, Choi et al. (2012) find that the average provincial shadow price

lies in the range of 6.54-7.44 dollars/ton during the period 2001-2010, Lee and Zhang (2012)

report an even lower average shadow price of 3.13 dollars/ton for 30 Chinese manufacturing

industries, while Yuan et al. (2012) report a range of 200-120300 Yuan/ton for 24 industries.

Our result is much higher than these studies. In more recent studies, Wei et al. (2013) report

a mean shadow price of 2059.8 Yuan/ton (linear programming estimation) and 612.6
Yuan/ton (maximum likelihood estimation) for power plants in Zhejiang Province which is
much closer to our estimation, using a similar methodology to ours (directional output
distance function parameterized as quadratic functional form).

Different methodologies employed in these studies are one of the main reasons for
disparities in the estimated shadow prices. In parametric estimations, results obtained from
Shephard/translog specifications (proportional expansion of good and bad outputs) are

consistently lower than results obtained using the directional/quadratic specification
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(expansion of good output and simultaneous contraction of bad output). This is because
the former estimation technique places the DMUs on a less steep portion of the production

frontier than the latter (Fare et al., 2005; Vardanyan and Noh, 2006). For those using DEA,

some of the efficient observations must be located on the inflection points, which means
that there is no unique slope to the frontier at those points. Consequently, the choice of

slope will considerably affect the scale of the shadow price (Lee et al., 2002). Additionally,

the dataset and sample period also may affect the results of the studies.

6.4 Morishima Elasticity of Substitution
We are also able to calculate the Morishima elasticity of substitution according to

equation (17) once the parameters have been estimated.
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Figure 7: Kernel Density of Morishima Elasticity
Figure 7 plots the kernel density of provincial Morishima elasticities for selected years
(more detailed estimates of Morishima elasticity are reported in Appendix Table 4A). From
the figure, we can observe that the kernel density curve shifts leftward, which means that
the average absolute value of the substitution elasticity has increased over time. In other
words, it has become more costly for the provinces in China to reduce CO, emissions as time

passes.
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Figure 8: Average Elasticity of Substitution by Region

Figure 8 furthermore plots the evolution of regional average Morishima elasticities.
From the figure, we observe that the average substitution elasticity (absolute value)
increased continuously for all the three regions and the whole country, indicating an
increasing cost of CO, abatement. Although the ratio of GDP to CO, emissions (y/b) has
increased from 4293 Yuan/ton in 2001 to 5254 Yuan/ton in 2010 for China, we can expect
that it will be more difficult to increase this ratio still further. Any further increases in the
ratio can only be brought about by much higher penalties on CO, emissions. The substitution
elasticity of the east region is much higher than that of the west and middle region (for most

years) respectively.

7. Conclusion

This paper investigates the technical inefficiency, shadow price and Morishima
substitution elasticity of CO, emissions in China, based on a provincial panel dataset covering
the years 2001-2010. The directional output distance function is parameterized as a
quadratic functional form and the parameters are estimated by a linear programming
algorithm. GDP represents the good output and CO, emissions the bad output. Moreover

labor, capital stocks and energy consumption comprise the three different inputs.
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Overall we find that China’s technical inefficiency of China increased continuously
during the periods 2001 to 2010 when we integrate CO, emissions into the production
technology. Generalizing, it is possible to reduce the CO, emissions by 4.5%, corresponding
to 0.86 billion tons, for the period 2001 to 2005 if all the provinces were to produce on the
production frontier. For the period of 2006 to 2010, the reduction potential increased to
4.9%, corresponding to a CO, emissions reduction of about 1.6 billion tons. We also find that
the shadow price of CO, reduction in China has increased continuously during the whole
sample period, and the speed of this increase has accelerated. For the period of the 2001 to
2005, the shadow price increased slightly from 1000 Yuan/ton to 1100 Yuan/ton, while for
the period 2006 to 2010 it increased dramatically from 1200 Yuan/ton to 2100 Yuan/ton.
Moreover, the shadow prices of the three regions are highly heterogeneous. The east region
has a much higher average shadow price than that of the middle and west regions. This has
mostly to do with the different industrial composition across the regions with the burden of
heavy, dirty industry located in the west.

Finally, we find that the average absolute value of the Morishima substitution elasticity
in China has also risen progressively during the sample period. This means that it has
become more costly for China to further reduce CO, emissions. The substitution elasticity of
the three regions is similarly very heterogeneous. The east region has a much higher
elasticity than the west region (in line with the high ratio of services industries located here),
as well of that for the middle region (for most years).

Our results have important policy implications. First, our results demonstrate that there
is scope for further CO, reductions and simultaneous GDP expansion for China if all the
provinces were to produce on the production frontier. Opportunities for ‘double dividend’ do
indeed exist. This can be achieved, in our view, if policy-makers provide more incentives to
push the firms within their regions to promote efficiency. Secondly, the Chinese government
is planning to establish domestic carbon tax and CO, emissions trading market. Our
estimation of the shadow prices may moreover provide a yardstick which the government
can use when fixing these tax rates and ascertaining an initial market price for the trading
system. Thirdly, to achieve the reduction target of CO, emissions, the central government of
China placed the burden of making these reductions on the regional governments. From the
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view of minimizing the social abatement cost, consideration should we taken of the different
abatement costs for each province when making these allocations. For instance, provinces
should have their reduction burdens brought into line with their different marginal
abatement costs. Finally, our results indicate that it is increasingly more costly for China to
further reduce CO, emissions. This insight may help to inform the ongoing debate between

the Chinese government and the community on climate change.
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Appendix:

Table 1A: Parameter Estimates of Directional Distance Function

Parameter | Estimate | Parameter | Estimate | Parameter | Estimate | Parameter | Estimate
S S S S S S S S
(04 a (04
0 -0.02 1 0.69 3 0.37 T2 0.20
a . (04
! -0.01 12 -0.23 % -0.30 s 0.00
(04 a (04 ,U
2 0.54 13 0.37 B 0.07 -0.06
a a Io)
3 -0.15 2 -0.23 Z -0.06 ! -0.10
a Fo)
A -0.76 2 -0.03 V2 -0.06 2 0.20
a Fo)
7 0.24 3 -0.30 & -0.10 3 0.00
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Table 2A: Estimates of Directional Output Distance Functions, 2001-2010

10" Five-year Plan 11" Five-year Plan
Provinces 2001 2002 2003 2004 2005 | 2006 2007 2008 2009 2010
Beijing 0.11 0.11 0.10 0.08 0.07 0.06 0.05 0.03 0.00 0.00
Tianjin 0.05 0.04 0.03 0.02 0.01 0.00 0.00 0.01 0.03 0.06
Hebei 0.00 0.01 0.01 0.01 0.05 0.03 0.00 0.02 0.10 0.01
Shanxi 0.00 0.02 0.03 0.01 0.00 0.02 0.02 0.07 0.10 0.14
Inner Mongolia 0.00 0.00 0.00 0.03 0.04 0.07 0.10 0.17 0.23 0.31
Liaoning 0.08 0.04 0.02 0.00 0.03 0.02 0.02 0.02 0.03 0.08
Jilin 0.02 0.02 0.00 0.00 0.02 0.05 0.08 0.14 0.19 0.28
Heilongjiang 0.13 0.11 0.09 0.06 0.04 0.03 0.01 0.01 0.00 0.00
Shanghai 0.20 0.18 0.15 0.11 0.09 0.06 0.02 0.00 0.02 0.02
Jiangsu 0.09 0.01 0.00 0.01 0.08 0.09 0.07 0.10 0.15 0.35
Zhejiang 0.02 0.01 0.00 0.01 0.04 0.08 0.10 0.09 0.12 0.13
Anhui 0.05 0.04 0.03 0.01 0.00 0.01 0.01 0.00 0.01 0.04
Fujian 0.02 0.02 0.01 0.01 0.02 0.00 0.00 0.02 0.04 0.02
Jiangxi 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.02 0.00 0.02
Shandong 0.00 0.01 0.05 0.07 0.26 0.18 0.11 0.08 0.00 0.10
Henan 0.03 0.00 0.02 0.09 0.09 0.08 0.05 0.02 0.00 0.01
Hubei 0.00 0.00 0.02 0.03 0.04 0.04 0.03 0.03 0.04  0.05
Hunan 0.00 0.00 0.03 0.06 0.14 0.13 0.11 0.07 0.04 0.02
Guangdong 0.19 0.11 0.05 0.00 0.06 0.05 0.02 0.00 0.06 0.11
Guangxi 0.01 0.00 0.00 0.02 0.03 0.03 0.03 0.04 0.05 0.12
Hainan 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.02 0.01 0.02
Chongging 0.01 0.01 0.00 0.00 0.02 0.02 0.02 0.06 0.03 0.01
Sichuan 0.01 0.00 0.06 0.09 0.11 0.12 0.12 0.14 0.08 0.00
Guizhou 0.00 0.00 0.04 0.07 0.08 0.10 0.11 0.11 0.13 0.15
Yunnan 0.00 0.01 0.01 0.00 0.07 0.10 0.13 0.14 0.14 0.18
Shaanxi 0.00 0.02 0.03 0.02 0.03 0.03 0.03 0.05 0.06 0.12
Gansu 0.00 0.01 0.02 0.02 0.02 0.03 0.04 0.06 0.05 0.07
Qinghai 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.03 0.03 0.03
Ningxia 0.00 0.00 0.01 0.02 0.03 0.04 0.05 0.08 0.09 0.12
Xinjiang 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.05 0.07 0.08
East 0.07 0.05 0.04 0.03 0.06 0.05 0.04 0.04 0.05 0.08
Middle 0.03 0.02 0.03 0.03 0.04 0.05 0.04 0.04 0.05 0.07
West 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.09 0.11
China 0.03 0.03 0.03 0.03 0.05 0.05 0.05 0.06 0.06 0.09

Note: 1) Mean values of provincial inefficiencies in each year are reported in the table for the whole country and three

different regions.
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Table 3A: Estimates of Shadow Prices, 2001-2010, 10000 Yuan

10" Five-year Plan 11" Five-year Plan
Provinces 2001 2002 2003 2004 2005 | 2006 2007 2008 2009 2010
Beijing 0.16 0.16 0.17 0.18 0.19 0.20 0.22 0.23 0.25 0.27
Tianjin 0.14 0.14 0.15 0.15 0.16 0.16 0.18 0.19 0.22 0.26
Hebei 0.06 0.06 0.06 0.06 0.05 0.06 0.08 0.10 0.13 0.16
Shanxi 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.09 0.11 0.12
Inner Mongolia 0.10 0.10 0.10 0.09 0.10 0.10 0.11 0.12 0.15 0.19
Liaoning 0.11 0.11 0.11 0.12 0.12 0.14 0.15 0.22 0.26 0.31
Jilin 0.11 0.11 0.11 0.11 0.11 0.13 0.15 0.18 0.22 0.26
Heilongjiang 0.10 0.11 0.11 0.11 0.11 0.11 0.12 0.13 0.15 0.17
Shanghai 0.18 0.19 0.20 0.20 0.21 0.23 0.25 0.28 0.31 0.34
Jiangsu 0.11 0.12 0.14 0.15 0.16 0.20 0.24 0.30 0.42 0.58
Zhejiang 0.10 0.11 0.12 0.14 0.16 0.17 0.19 0.23 0.28 0.33
Anhui 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.10
Fujian 0.12 0.12 0.12 0.12 0.13 0.13 0.15 0.17 0.19 0.23
Jiangxi 0.09 0.09 0.10 0.10 0.10 0.11 0.12 0.13 0.14  0.15
Shandong 0.07 0.07 0.08 0.09 0.08 0.11 0.14 0.19 0.29 0.42
Henan 0.01 0.02 0.02 0.02 0.02 0.03 0.05 0.09 0.15 0.22
Hubei 0.08 0.09 0.09 0.09 0.10 0.10 0.11 0.13 0.15 0.17
Hunan 0.06 0.06 0.07 0.06 0.06 0.06 0.07 0.09 0.11 0.14
Guangdong 0.08 0.09 0.09 0.09 0.10 0.11 0.12 0.15 0.21 0.28
Guangxi 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.11 0.13 0.17
Hainan 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14  0.15
Chongging 0.10 0.10 0.11 0.11 0.12 0.12 0.13 0.14 0.15 0.16
Sichuan 0.05 0.05 0.05 0.05 0.06 0.07 0.08 0.09 0.11 0.14
Guizhou 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.08 0.08 0.09
Yunnan 0.11 0.11 0.11 0.11 0.10 0.10 0.11 0.11 0.12 0.14
Shaanxi 0.10 0.10 0.11 0.11 0.11 0.12 0.13 0.15 0.17 0.20
Gansu 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.12 0.12
Qinghai 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14  0.15
Ningxia 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.14
Xinjiang 0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.16 0.16 0.17
East 0.11 0.12 0.12 0.13 0.14 0.15 0.17 0.20 0.25 0.30
Middle 0.07 0.08 0.08 0.08 0.08 0.09 0.10 0.11 0.14 0.17
West 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.12 0.13 0.15
China 0.10 0.10 0.10 0.11 0.11 0.12 0.13 0.15 0.18 0.21

Note: 1) the mean values of provincial shadow price in each year are reported in the table for the three regions and whole

country.
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Table 4A: Estimates of the Morishima Elasticity, 2001-2010

10" Five-year Plan

11" Five-year Plan

Provinces 2001 2002 2003 2004 2005 | 2006 2007 2008 2009 2010
Beijing -0.23 -0.25 -0.26 -0.28 -0.30| -0.33 -0.36 -0.38 -040 -0.43
Tianjin -0.12 -0.13 -0.14 -0.16 -0.17| -0.19 -0.21 -0.24 -0.27 -0.31
Hebei -0.55 -060 -0.67 -074 -093)| -091 -087 -0.81 -0.79 -0.75
Shanxi -0.17 -0.22 -0.26 -0.28 -0.29| -0.33 -0.37 -0.40 -038 -041
Inner Mongolia -0.11 -0.13 -0.15 -0.20 -0.24| -0.29 -033 -0.39 -042 -045
Liaoning -0.30 -031 -034 -036 -041)| -0.44 -047 -0.46 -0.50 -0.56
Jilin -0.13 -0.14 -0.15 -0.17 -0.20| -0.22 -0.24 -0.27 -0.30 -0.34
Heilongjiang -0.26 -0.26 -0.27 -0.29 -031)| -033 -035 -0.38 -0.38 -041
Shanghai -0.30 -032 -033 -036 -038| -0.40 -044 -047 -050 -0.54
Jiangsu -0.63 -062 -0.66 -0.73 -082)| -0.87 -093 -0.99 -1.08 -1.29
Zhejiang -046 -048 -051 -0.56 -0.60| -0.66 -0.73 -0.75 -0.78 -0.84
Anhui -0.35 -036 -038 -039 -041)| -0.44 -047 -0.49 -0.52 -0.56
Fujian -0.23 -0.25 -0.27 -0.29 -033)| -036 -039 -0.42 -045 -047
Jiangxi -0.15 -0.16 -0.18 -0.21 -0.23| -0.25 -0.27 -0.29 -0.30 -0.34
Shandong -0.82 -084 -092 -100 -1.27)| -116 -114 -1.11 -1.06 -1.17
Henan -201 -175 -170 -262 -209| -190 -135 -0.97 -0.78 -0.73
Hubei -0.28 -0.29 -033 -036 -040)| -0.42 -046 -0.48 -0.51 -0.55
Hunan -0.35 -037 -041 -049 -062| -0.64 -066 -0.62 -0.60 -0.60
Guangdong -0.98 -098 -1.07 -117 -1.32)| -1.42 -151 -1.44 -141 -1.46
Guangxi -0.18 -0.19 -0.21 -0.24 -0.27| -0.29 -0.32 -0.33 -0.33 -0.36
Hainan -0.03 -0.04 -0.04 -004 -004| -005 -0.05 -0.07 -0.07 -0.08
Chongging -0.13 -0.14 -0.15 -0.16 -0.18| -0.20 -0.22 -0.26 -0.27 -0.30
Sichuan -047 -049 -059 -065 -0.66| -0.68 -0.70 -0.69 -0.68 -0.66
Guizhou -0.09 -0.10 -0.13 -0.16 -0.18| -0.22 -0.24 -0.24 -0.27 -0.29
Yunnan -0.13 -0.14 -0.16 -0.17 -0.22| -0.25 -0.28 -0.30 -0.32 -0.34
Shaanxi -0.14 -0.16 -0.18 -0.20 -0.22| -0.23 -0.26 -0.29 -0.31 -0.35
Gansu -0.07 -0.08 -0.10 -0.11 -0.12| -0.13 -0.15 -0.16 -0.17 -0.19
Qinghai -0.02 -0.02 -0.02 -002 -003| -0.03 -0.04 -0.05 -0.05 -0.06
Ningxia -0.02 -0.02 -0.03 -003 -0.04| -0.05 -0.06 -0.07 -0.08 -0.09
Xinjiang -0.08 -0.09 -0.10 -0.112 -0.12| -0.14 -0.15 -0.17 -0.19 -0.20
East -042 -0.44 -047 -052 -060)| -0.62 -065 -0.65 -0.66 -0.72
Middle -046 -044 -046 -060 -0.57| -0.57 -0.52 -0.49 -047 -0.49
West -0.13 -0.14 -0.16 -0.19 -0.21| -0.23 -0.25 -0.27 -0.28 -0.30
China -0.33 -033 -036 -042 -045| -0.46 -047 -047 -047 -0.50
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